
Signal, Image and Video Processing
https://doi.org/10.1007/s11760-024-03142-z

ORIG INAL PAPER

Prediction andmodeling of mechanical properties of concrete
modified with ceramic waste using artificial neural network
and regression model

Pravin R. Kshirsagar1 · Kamal Upreti2 · Virendra Singh Kushwah3 · Sheela Hundekari4 · Dhyanendra Jain5 ·
Amit Kumar Pandey5 · Jyoti Parashar6

Received: 14 February 2024 / Revised: 4 March 2024 / Accepted: 8 March 2024
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Over two centuries, concrete has been crucial to building. Thus, eco-friendly concrete is being developed. Emulating these
tangible traits has recently gained popularity. Ceramic waste concrete’s mechanical properties were modeled in this study.
Ceramic waste percentages ranged from 5 to 20%. Compressive and tensile concrete strengths were modeled. To predict
concrete hardness, regression modeling and artificial neural network (ANN) were used. Model performance was evaluated
using prediction coefficients and root-mean-square error (RMSE). ANN models outperformed linear prediction with a coef-
ficient for determination (R2) of 0.97. ANN models achieved root-mean-square errors (RMSEs) of 1.22 MPa, 1.21 MPa,
and 1.022 MPa after 7, 14, and 28 days of retraining, respectively. Linear regression model showed RMSE values of 1.21,
1.32, and 1.27 MPa at 7, 14, and 28 days, respectively. In determining the compressive and tensile strength, the R2 was 0.70,
meanwhile the ANN model achieved 0.87. Given its accuracy in predicting the strength qualities of ceramics cement and
structural stiffness, the ANN model presents a promising tool for representing various types of concrete.
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1 Introduction

The use ofwaste resources to create environmentally friendly
and recyclable components is becoming more common,
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notably in the building industry [70]. Cement, a key com-
ponent of construction materials worldwide, is being inves-
tigated for prospective upgrades [4–10], such as reinforced
aggregate substituting natural sands and rock pieces [55].
Recent research has looked into the possibilities of adding
ceramics into concrete compositions to ensure long-term sus-
tainability [70]. Furthermore, studies have looked into the
efficacy and durability of ceramic waste-cured self-curing
aggregates [113], as well as the use of waste ceramics
and synthetic fibers from the windsurfing industry in high-
temperature concrete building [115]. Notably, recent aca-
demic research has concentrated on predicting and modeling
concrete’s tensilemodulus [100].Neural networks (NNs) and
computational techniques have been used to predict concrete
dynamics [100], while multimodal adaptive logistic b-spline
models have been used to predict environmental aggregate
compressive strengths [76]. Furthermore, research has used
machine learning approaches, such as fuzzy evolving algo-
rithms, to forecast themechanical properties of cement-based
materials [61, 67].

The objectives of this research are to use regression mod-
eling and artificial neural network (ANN) approaches to
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simulate the mechanical properties of ceramic waste con-
crete [13–16], such as compressive and tensile strengths.
The performance of these models is assessed using predic-
tion coefficients and root-mean-square error [21]. The study
evaluates the accuracy and effectiveness of ANN models in
forecasting [23, 24] concrete strength to classic linear regres-
sion methods. Furthermore, the study aims to investigate the
capability of [27, 29] ANNmodels inmodeling various types
of concrete and their use in real-world construction settings.

2 Literature review

The study [118] offered empirical models for predicting the
compressive strength of plastic sand paver blocks (PSPB)
constructed from plastic, sand, and fiber [36, 39, 40]. The
results revealed substantial connections between predicted
and real values, with R2 values of 0.87 for GEP and 0.91 for
MEP, demonstrating MEP’s superior performance. Sensitiv-
ity study revealed that sand grain size and fiber percentage
play an important impact in compressive strength, account-
ing for about 50%of the total [41–50]. These findings point to
PSPB’s potential [51–60] in sustainable construction, which
promotes environmental preservation while also providing
economic benefits.

The study [119] advocated using waste-derived cement-
based composites (CBCs) to address environmental issues.
Its goal was to evaluate eggshell and glass powder-modified
cement mortar (EG-CM) in acidic environments using
machine learning techniques [61–70]. SVM emerged as the
best accurate predictor, with anR2 value of 0.88. SHAP study
revealed that glass powder is critical for EG-CM’s acid resis-
tance.

The article [120] describes a unique approach that uses
gene expression programming (GEP) to estimate the com-
pressive strength (CS) of plastic sand paver blocks (PSPB),
with the goal of improving waste management and eco-
friendly building [71–80]. Using a dataset of 135 compres-
sive strength findings and seven input factors, including sand
size and fiber percentage [81–88], GEPmodels show promis-
ing predictive accuracy, with R2 values of 0.89 (training) and
0.88 (testing). Sensitivity analysis identifies sand size and
fiber percentage as critical elements in PSPB CS [100–120],
demonstrating the models’ accuracy and potential for wider
use.

The study [121] suggests employing machine learning
approaches, notably MEP and GEP, to forecast the com-
pressive strength (CS) and slump of alkali-activated concrete
(AAC). MEP models surpass GEP in terms of expedit-
ing AAC proportion determination for construction projects
while also taking environmental sustainability and adapt-
ability into account, with R2 values of 0.92 and 0.93 for

slump and CS prediction, respectively. The models demon-
strate strong correlations with expected outcomes following
hyperparameter fine-tuning and validation, with sensitivity
analysis providing insights into factors influencing AAC
characteristics.

The study [122] seeks to create machine learning
models for forecasting the compressive strength (CS) of
self-compacting concrete (SCC) by gene expression pro-
gramming (GEP) and multi-gene expression programming
(MEP). It fills a gap in previous studies by introducing math-
ematical formulae for estimating SCC strength. The results
show thatMEPoutperformedGEP,with anR2 of 0.89 against
0.85. Sensitivity analysis identifies superplasticizer as the
most influential element, providing important insights into
raw material effects on SCC strength.

The study [123] seeks to predict the compressive strength
(CS) of preplaced aggregate concrete (PAC) utilizing
machine learning approaches such as gene expression pro-
gramming (GEP) and random forest. The complexity of
PAC, which involves injecting cement–sand grout after lay-
ing coarse aggregate, needs good CS predictions. Machine
learning minimizes the requirement for significant experi-
mental testing. The results reveal a significant agreement
between predicted and experimental CS values, with R2 val-
ues of 0.94 for GEP and 0.96 for RF, indicating that the latter
performs better. Lower statistical error values further support
RF’s superiority.

The study [123] proposes utilizingmachine learning (ML)
methods to estimate concrete compressive strength (CS) at
high temperatures (HT), with the goal of streamlining SCM
integration and achieving CS in concrete. Results show that
the bagging regressor (BR) model outperforms the decision
tree (DT) and AdaBoost (ADB) models, with the highest
coefficient of determination (R2) at 0.92. Statistical analysis
and cross validation corroborate the BR model’s reliabil-
ity, revealing decreased error metrics and a closer alignment
with actual values. Sensitivity research demonstrates temper-
ature’s considerable impact on CS, confirmingML’s efficacy
in forecastingCS for SCMconcrete underHT circumstances.

Table 1 demonstrates the use of newer technologies to
forecast and recreate ceramic qualities in current research.

Table 1 shows the recent emphasis on predicting and esti-
mating properties of concrete utilizing a wide variety of
approaches and technology. [1–3]. This can be observed as
a result of the fact that however, the full potential of predic-
tions and modeling of the features of concrete made from
pozzolanic ingredients have not yet been used. In light of
this, the following objectives for the study are intended: 1.
to forecast the mechanical properties of concrete by using
ANNs and a coefficient of determination. Following this, we
will evaluate the twomodels’ capacity for prediction in order
to establish which of the two is more accurate.

123



Signal, Image and Video Processing

Table 1 Classification techniques for properties of concrete that have
stood the test of time

Several ceramic
types

Indicators of
concrete’s
physical
properties

Method for
predicting the
future

References

The Sum Total
of Ceramics
Garbage

Durability in
compres-
sion and
tension

Support Vector
Machine
(SVM)

[19]

Bacteria
Concrete

Resistance to
stress in a
materials

Simulation in
Mathematical

[52]

Composite
fiber-
reinforced
concrete

Force of
tensile
recovery
after a
delay

NN predictive
aids

[64]

Small-Scale
Materials, or
Nanomateri-
als

Pressure
resistance

The Synthesis
of a
Computer
Program to
Express
Genes

[109]

pulverized
Reactive
Substance

Resistance to
damage
tolerance
in tension

Simulation in
Mathematical

[106]

Garbage made
of ceramics
and synthetic
fibers

Maximum
compres-
sive
forces

SVM and
gradient
boosting
machine

[102]

Reinforcement
was weakened
by oxidation

Solidity
under
tension

Calculating the
Limits of
Compression
Chords

[58]

Light weight
concrete

Strongest
possible
compres-
sion

Simulation in
Mathematical

[85]

Connection of a
reinforcement
ratio to a
columns

Tensile
rigidity

The Synthesis
of a
Computer
Program to
Express
Genes

[74]

Regular
cementations
material

Toughness
under
pressure

Methodologies
based on the
reaction
surfaces

[90]

3 Proposedmethodology

3.1 Methods and data used

Extensive testing conducted in a laboratory. The samples con-
tainers used for the compressive and tensile evaluations are

Table 2 The cement used in these studies was regular Portland cement,
and the concrete mixture was of a specified kind

Product requ OPC Ceramic crystals

SiO2 31.8 69.49

CaO 61.38 9.55

AL2O3 7.58 19.87

Fe2O3 5.22 3.88

MgO 2.98 5.01

K2O 0.89 3.99

shown in Fig. 1 (as cubes and cylinders, respectively), and
Fig. 2 shows the cointegration test of the cementations com-
posites used to simulate the effectiveness of concrete faith
and tensile properties in this research (as shown in Tables 2
and 3). Figure 1 shows the cubes and cylinders samples hold-
ers employed for the compressive and tensile tests.

The concrete’s resistance refers to the amount of force that
may be applied to a floor foundation before enabling the slab
to crack or buckle [11, 14]. Themechanical properties of con-
crete are used to evaluate the material’s ability to withstand
the shrinkage that results from being compressed. Hardness
may be thought of as another name for biomechanical qual-
ities. Concrete’s tensile strength is measured by its ability to
resist further stretching when subjected to pulling forces [15,
17].

The ratio of water to cement in a concrete mix denotes
the percentage of water to cement that will be present in the
finished product. In most circumstances, the best w/c ratio is
between0.40 and0.45 [18–20]. Increases in the percentage of
water to cement may decrease the durability of cementitious
materials.

The term "workability" is used in the context of concrete
to refer to the ease with which the material may be poured,
disseminated, and crushed on the building site [22, 25, 26,
28]. When the workability value is higher, it implies that the
concrete may be poured with less difficulty.

Discarded ceramics: Recycling rates for ceramic ranged
from 0 to 20%, with a 2.5% margin of error for any number
somewhere in. In additional, powdered ceramics fragments
were included [30].

The ordinary Portland cement (OPC) from Maros, South
Sulawesi, was comprehensively analyzed for chemical and
physical qualities. It is a significant element in mortar
manufacturing, influencing compressive strength properties.
Rigorous testing ensured that OPC’s properties were consis-
tent and trustworthy for their intended use. The compatibility
of additives such as superplasticizers was explored in order
to increase performance in high-strength mortar production.
The proposed methodology was fed a total of 150 indepen-
dently confirmed data observations. 2 percent, 5 percent, 7
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Fig. 1 Crushing and tension test
specimen dimensions for cubes
and cylindrical rods

Fig. 2 Actual tangible quality
real correlation tensile strength at
7, 14, and 28 days during drying
(CSA7, CSA14, and CSA28)
equates to optimum tensile
capacity of the concrete

percent, 10 percent, 12 percent, 15 percent, 17 percent, and
20 percent ceramics garbage were combined with cement to
see what would happen [31, 32] and [34]. These percentages
of ceramic wastes were all used as a percentage of cement.
In order to explore the effect that ceramic waste has on the
properties of concrete, specimens containing ceramic waste
as well as those that did not include any ceramic waste were

put through a series of tests. The mechanical qualities of
cement were evaluated by casting a concrete mixture with
dimensions of 150 mm on a side, 150 mm on a length, and
150 mm on a height [1, 36, 47]. The split tensile strength of
thematerialwas evaluated using concrete cylinder specimens
with dimensions of 300 mm by 150 mm. Concrete’s machin-
ability, along with its compressive strength, flexural strength,
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Table 3 Elements of concrete
mixtures and their distribution
patterns

Mixtures W/c
ratio

Cement
(kgm3)

Soil Concrete Percents
replace

Gritty, rough
material

MT1 0.52 455 705 0 0 1258

MT2 0.52 455 595.63 20.36 3.5 1258

MT3 0.52 455 599.87 29.56 7 1258

MT4 0.52 455 588.12 55.58 8.5 1258

MT5 0.52 455 602.5 65.5 11 1258

MT6 0.52 455 588.32 79.33 13.5 1258

MT7 0.52 455 602.3 88.78 17 1258

MT8 0.52 455 622.55 104.23 21.5 1258

MT9 0.52 455 499.25 125.33 18 1258

and overall strength, was one of the properties that was eval-
uated [37]. In addition to the incorporation of ceramic waste
in place of coarse aggregates, the water–cement ratios had
also been adjusted to a range between 0.4 and 0.44 [54]. The
chemical components of both the powder combination and
the compound are listed in Table 2 [55]. The precise sorts of
mixtures that were used in this investigation are detailed in
Table 3, which can be seen here.

Table 3 shows the design mixtures utilized in the dataset,
as well as the distribution patterns of major concrete mix-
ture components. Each mixture is labeled MT1 to MT9. The
water-to-cement (w/c) ratio in all mixes is constant at 0.52.
All combinations have a cement content of 455 kg/m3. The
table also includes data on the distribution of soil and con-
crete components, as well as the percentage replacement of
gritty, abrasive material. The amounts of soil and concrete
components vary among combinations, with varied ratios
of replacement for gritty, abrasive material. Overall, these
design combinations serve as the foundation for analyzing
the performance and properties of concrete compositions in
the dataset.

It is possible to find connections between sets of data by
using a technique called quadratic regression [96, 107, 108].
The fundamental procedure of linear regression may be writ-
ten as (1). Which means that (a) is both the result of (and the
main cause of) (b). The number 0 represents the point where
the two lines meet is α0 [12, 109]. The slope of a line (α1),
represented by the number 1, is a crucial part of every depen-
dent variable (b). There is a positive connection if the quantity
is more than zero, and a negatives one if it is less than zero
[54, 94].

a � α0 + α1b (1)

3.2 ANN

Artificial Neural Networks (ANNs) outperformed other
robust AI models such as ANFIS, M5, GEP, MARS, EPR,
and SVM due to their shown ability to handle complicated,
nonlinear interactions inherent in concrete material qualities.
ANNs provide versatility inmodeling varied datasets and can
capture subtle patterns without requiring explicit mathemat-
ical formulations.

Furthermore, ANNs support iterative learning and mod-
ification, allowing for refining and adaptability to a variety
of experimental settings, making them ideal for the delicate
nature of empirical research [55, 86, 115]. A neural network
consists of a collection of simple components that carry out
related tasks. Each neuron’s functions are dependent on its
own unique perceptron, thresholds, andweights [98, 99]. The
input data, the hidden layers, as well as the output layers are
indeed the threemajor components of any givenANNmodel.
In a NN, the nodes stand in for the data that have been input
into the network. As the name suggests, it transfers messages
without changing them in any manner [92]. With n levels to
correspond to the number of neurons in the network, the layer
is a crucial component that modifies the signals given by the
passive node. The output layer plays a crucial role in net-
works with n layers and n neurons per layer [41, 75, 100].
Weighting levels are the backbone of every artificial neural
network, and they are often adjusted according to a specific
formula [33, 54, 91]. This action of fine-tuning existing set-
tings is known as learning. After being trained, an ANN is
able to make predictions about the output values of a given
input sequence [55, 100]. TheANNstructures shown inFig. 3
were developed in the following ways:

1. Neural network type, 2. hidden layer, 3. Neurons in
layer, 4. number of output

To enhance model performance, hyperparameters such as
the learning rate (0.001), batch size (32), and the number of
hidden layers (2–3) can be adjusted. Additionally, incorpo-
rating a dropout rate of 0.5 can help prevent overfitting and
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Table 4 Estimating the efficacy of ANN-LR: a look at the factors borne by empirical research

A � 7 A � 14 A � 28 NN � 7 NN � 14 NN � 28 LR � 7 LR � 14 LR � 28

Tensile strengths Min 02.53 02.85 02.53 02.52 02.73 02.638 02.31 02.22 02.33

Max 03.12 4 4.21 3.41 3.21 4.13 3.11 2.98 4.12

Mean 2.98 2.85 3.45 3.01 2.78 2.56 3.45 3.22 2.98

Study 0.31 0.28 0.35 0.30 0.26 0.35 0.34 0.28 0.23

Skewness − 0.82 − 0.29 0.41 − 0.92 0.28 0.92 − 0.51 0.20 − 0.61

Kurtosis − 1.35 − 1.55 − 1.63 − 0.77 − 1.77 0.33 − 1.45 − 2.15 0.81

Compressive strength Min 27.99 31.88 28.9 25.3 30.21 29.9 31.6 31 29.5

Max 29 34.6 33 31.7 37.8 39.3 31.3 38 41

Mean 31.2 33.55 29.9 27.33 32.44 36.89 28.32 33.74 36.88

Study 2.43 02.35 02.63 02.52 02.83 02.55 02.77 02.62 02.55

Skewness − 0.62 − 0.42 − 0.55 − 0.78 − 0.45 − 0.68 − 0.55 0.19 − 0.59

Kurtosis − 3.12 − 2.88 − 2.55 − 3.44 − 1.78 − 3.12 − 1.96 − 3.02 − 2.01

Table 5 Comparing the accuracy
of NN and LR models for
predicting compressive and
tensile forces at 7, 14, and
28 days

NN � 7 NN � 14 NN � 28 LR � 7 LR � 14 LR �
28

Tensile strength MAE 0.24 0.45 0.51 0.33 0.42 0.21

MSE 0.15 0.10 0.19 0.11 0.29 0.17

RMSE 0.07 0.14 0.24 0.18 0.19 0.7

MAPE 5.12 8.89 13.01 6.87 9.88 12.01

Compressive
strength

MAE 0.71 0.38 0.46 0.49 0.88 0.91

MSE 0.28 0.19 0.39 0.43 1.55 0.99

RMSE 0.30 0.19 0.26 0.31 0.39 0.38

MAPE 3.08 3.21 0.89 5.01 1.77 2.88

Fig. 3 In this investigation, we used a standard ANN setup with all
inputs

improve generalizability. Mathematical features from mea-
sured, predicted ANN values and logistic R (LR) [73, 89,
101] are included in Table 4. Table 5 displays the absolute
percentage error (APE), mean absolute error (MAE), root-
mean-squared error (RMSE), and mean absolute percentage
error (MAPE) numbers used to assess the precision of the

models.

MAE =
1

n

n∑

i�1

∣∣ye − yp
∣∣ (2)

MSE � 1

n

n∑

i�1

(
ye − yp

)2 (3)

RMSE
1

n

√√√√
n∑

i�1

(
ye − yp

)2 (4)

MAPE � 1

n

n∑

i�1

∣∣∣∣
ye − yp

yp

∣∣∣∣ ∗ 100 (5)

One takes the real value ye and subtracts it from the
predicted value yp. APE measures the absolute difference
between yp and ye. MAE calculates the average magnitude
of errors between yp and ye. RMSE is calculated as the square
root of the average of squared discrepancies between yp and
ye, and it is used to assess the model’s prediction ability.
MAPE estimates the average percentage difference between

123



Signal, Image and Video Processing

yp, providing insight into the degree of mistakes relative to
ye.

4 Results and discussion

Here, empirical data are used to compare the performance of
artificial neural networks (ANNs) and regression techniques
for forecasting the tensile and compressive characteristics
of ceramics and cementitious materials. The accuracy of
the forecasts is measured in several ways, including by the
root-mean-square error (RMSE). Bothmodels’ efficacywere
evaluated using the measurement coefficient (R2). By calcu-
lating the root-mean-squared error, we could evaluate how
far off we really were. It is a statistical indicator of the devia-
tion from the mean of standardized residuals. Distance from
the mean value of your residuals is quantified by the RMSE.
A high value for this metric indicates that a large number of
data points are clustered close to the best fit line. A measure
of how well the data fits is provided by the R2 statistic.

Stress in a compressed state.
Multiple compression tests were performed on various

laboratory combinations to measure their strength growth.
There is a 1.5% improvement in concrete strength after 7 days
when using 2.5% ceramic waste. There was an increase of
4.5 percentage points in strength over the control specimens
when ceramic waste was added to the cured concrete at the
rates of 5%, 7.5%, and 10%. When more than 10% ceramics
debris was mixed in with the concrete, the specimen’s com-
pressive strength dropped. Reductions of 8%, 14%, and 16%
were recorded, in that order, in concrete samples containing
12%, 14.5%, 16.5%, and 20% waste. After 14 and 28 days,
there were persistent patterns in the concrete’s workability.
There was an 11% increase in concrete strength at 5% after
14 days. Further, adding 5% pozzolanic ingredients signifi-
cantly increased the concrete’s strength.Also, after 28days of
testing, the 5% cementations material exhibited an increase
of 8%. The best result was achieved by replacing sand in the
concrete specimen with ceramic waste at a 5 percent dosage.

The compressive strength estimates made using either
approach were accurate for a week. With an R2 of 0.97 for
the linear regression and 0.9% for the ANN model, the lin-
ear regression was clearly superior. The results show that
although both methods are correct, the linear regression
method outperformed the ANN when estimating the activity
after 7 days. After 14 days, both the ANN model (R2 � 0.97
for predictions) and the regression model (R2 � 0.96.5 for
coefficient of determination) were significantly better than
the 1-week baseline at predicting strength growth. In fore-
casting the strength attributes after 14 days, the inferential
ANNmodel performed better than the linear regressionmod-
els. Both models performed similarly when asked to forecast

concrete strength after 28 days. When compared to a lin-
ear regression model, the ANN approach had an R2 of 0.97,
meanwhile the regression model approach had an R2 of 0.95.
The RMSE for ANN models was 1.2 Mpa after 7 days, 1.1
Mpa after 14 days, and 1.02 Mpa after 4 weeks (28 days).
Values among 1.3 and 15.2 Mpa for various artificial intelli-
gence approaches used to forecast the tensile properties of fly
ash geopolymer concrete mixtures, and adjusted r2 around
0.70 and 0.98 for linear model at 1, 2, and 28 days.. report.
A coefficient of determination of 0.88 and a RMSE of 0.98
were obtained when the ultimate strength of polypropylene
pp composite materials recycled accumulated material was
modeled using an SVM classifiers and a shading pumping
up supervised learning methodology.

4.1 Tensile strength

The elasticity of the concrete samples was improved by
0.39%, 2.37%, 2.76%, and 3.16%when recycled predication
was added at 2.5%, 5%, 7.5%, and 10%, respectively. Con-
sistent with the results of the compressive strength test, the
compressive modulus decreased by 0.39 percentage points,
7.11%, 8.3%, and 8.7% after 7 days of testing for 12.5%,
15%, 17.5%, and 20%, respectively. After 14 days, all
percentages of ceramic waste examined showed increased
compressive characteristics (2.5%, 5%, 7.5%, and 10%).
After 28 months, the structural stress was increased by
10%, 15%, 9.3%, and 6.6% when ceramic waste was added
to concrete at a 2.5%, 5%, 7.5%, and 10% concentration,
respectively. Figure 4 shows the ANN and linear regres-
sion models’ respective detection accuracies for split tensile
strengths in this study. The samemethodology used to predict
compressive strength was used to model split tensile mod-
ulus for 7, 14, and 28 days. With an R2 of 0.11 and 0.09,
respectively, the ANN and logistic regression models per-
formed poorly 7 days out. Improvements in methodology for
the 14-day split tensile results are shown by R2 values of
0.3 and 0.54 for the ANN and logistic prediction techniques,
respectively. It has been established that a linear regression
model is superior to even an ANN model for predicting the
modulus of rupture over a 14-day period [86–95]. Utilizing
ANNand linear regression analysis, it was shown that predic-
tions of 28-day divided tensile strength were more accurate
than those using 1-week and 14-day results. When compared
with multiple linear regression, the ANN model’s R2 of 0.87
much outpaced that of 0.70. After 28 days, in order to esti-
mate the dividing compressive modulus of ceramic recycling
aggregates, the ANNmethod performs noticeably better than
the linear regression technique. Comparing the R2 values of
SVM with GBM analysis tools for green glass 7 charac-
teristics concrete, Ray, Rahman, et al., (2021) observed a
comparable difference, using R2 values of 0.70 as well as
0.92.
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Fig. 4 Examining the tensile qualities of ceramic materials and bricks and comparing them to their predicted values
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Fig. 5 Comparison of experimental and computational bending and tensile results for ceramics and cement debris

Figure 5 shows the comparative analysis of tensile and
compressive strengths at different temperatures over 28 days
(MPa) for various methods PC-ANN, hybrid ANN, and
WOC-ANN with the proposed method shows the effective-
ness of the system.

Figure 6 for tensile strength, the PC-ANN exhibits
decreasing values from 4.2 MPa at 10 °C to 1.0 MPa at
1000 °C, with the proposed method consistently shows the
lowest values. In contrast, the hybrid ANN demonstrates
superior tensile strength at elevated temperatures. For com-
pressive strength, the PC-ANN method starts at 26 MPa and
decreases to 13 MPa, with the proposed method consistently
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Fig. 6 Temperatures on concrete compressive strength analysis

123



Signal, Image and Video Processing

0
5

10
15
20
25
30

10 200 400 600 800 1000C
om

pr
es

si
ve

 S
tr

en
gt

h 
(M

Pa
)

Temperature (ᵒC)

PC-ANN Hybrid ANN

WOC-ANN Proposed Method

Fig. 7 Temperatures on concrete tensile strength analysis over 28 days
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Fig. 8 Comparative analysis of various methods using R2 score

showing lower values. The hybrid ANN maintains higher
compressive strength, indicating its resilience to tempera-
ture variations is shown in Fig. 7. The WOC-ANN and the
proposed method consistently display the lowest compres-
sive strengths, suggesting the need for further optimization
in high-temperature conditions. Overall, the hybrid ANN
method appears promising for maintaining mechanical prop-
erties at elevated temperatures compared to other approaches.

Figure 8 compares alternative approaches for forecasting
concrete qualities, namely (CS), along with their coefficient
of determination (R2) values. Traditional approaches (GEP
and SVM) produced reasonable R2 values ranging from 0.87
to 0.88. More advanced approaches, such as MEP and bag-
ging regressor, demonstrated better performance, with R2

values of 0.92. Hybrid models that combined GEP with
MEP or RF performed even better, with R2 values as high as
0.94. Notably, the proposed system that uses ANN-LR out-
performed all other approaches, with an amazing R2 value
of 0.97. This shows that ANN-LR model outperforms the
existing hybrid techniques in predicting concrete qualities,
making it a promising solution for real-world applications in
construction.

5 Conclusion

This study aims to assess the grade of slabs constructed using
Portland cement as a sands alternative and to provide predic-
tions about its strong features and cracking capacity. From
whatwecan tell, adding ceramicwaste to concrete at different
percentages (2.5–5%, 7.5–10%) may boost its compression
strength by 3, 5, and 3.5 percentage points, respectively. The
strength of ceramic performance of concrete decreased by
1–10% when additional cementations material was added.

• The ultimate tensile of the material structure by roughly
10%, 15%, 9%, and 6% for 2.5%, 5%, 7.5%, and 10%
quantities of blast slag, correspondingly. Similar to the
decreases inmechanical properties, decreases in fracturing
tensile properties ranged from0.3 to 5%for each additional
decrease in the ceramics proportion. The optimal range for
adding pozzolanic ingredients to improve the workability
of the concrete capacity is between 2.5 and 10%.The oppo-
site is true for concrete, where 5% ceramic waste in place
of sands was shown to maximize both compression and
splitting tensile strength.

• These techniques all seem to be about as accurate as
one could want for forecasting bearing capacity with
ceramic cementitious materials. Regression analysis after
7 daysmay be useful for predicting earthenware concrete’s
mechanical characteristics, but an ANN provides more
reliable results after 14 and 28 days. Therefore, this study
suggests using anANNmodel to ascertain strength growth,
since cube compressive intensity is a globally accepted
proxy for compression strength.

• Both the artificial neural network and the regression
model machine learning approaches failed miserably in
the ultimate load-carrying capability example. In a test
predicting a material’s compressive and flexural strength
7 or 14 days in the future, neither model fared well.
Following 28 days, the ANN model predicted correctly.
This work shows that the proposed model can now accu-
rately forecast strengths growth and split compressibility
of porcelain cement hydration components, making it
suitable for modeling diverse ceramic kinds. However,
both machine learning approaches failed in predicting
the ultimate load-carrying capability, showing accuracy
only after 28 days. Despite advancements, further study
is warranted to enhance prediction accuracy and address
limitations. Evidently, further study is include improving
ANN models for more precise predictions of mechanical
properties, investigating additional variables influencing
strength evolution, and assessing other machine learning
methodologies. Validation across multiple ceramic types
and real-world circumstances is critical to ensuring the
proposed model’s reliability and usefulness.
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