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a b s t r a c t

With the expansion of renewable energy sources and its integration with the grid, power semiconduc-
tor devices applications has been increased rapidly which causes many Power Quality Disturbances
(PQDs). These disturbances can cause significant losses in the distribution system, therefore it is
essential to recognize and mitigate these disturbances timely. The present work proposes a novel
method for the classification of single stage and multiple PQDs based on dimensionality reduction. The
main objective is to transform the data set from higher dimensional space to lower dimensional space
by eliminating the unnecessary features. This paper proposes a supervised learning dimensionality
reduction technique, i.e. Linear Discriminant Analysis (LDA) for the dimensionality reduction of the
data set of twenty nine types of PQDs including single stage and multiple PQDs. In this technique, the
ratio between class variance and within class variance are maximized for maintaining the maximum
class separability, to obtain a lower dimensional space of the features. The performance of LDA is
analysed with four type of machine learning classifiers such as k-Nearest Neighbour (KNN), Naive
Bayes (NB), Support Vector Machine (SVM) and Random Forest (RF). Classification results show that
the higher classification accuracy is achieved for the twenty nine types of PQDs under different noise
levels (20 dB to 40 dB).

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, with evolution in the areas of power electron-
ics technology, applications of non-linear loads are increasing
rapidly, which have deteriorated the quality of power in power
system. These Power Quality (PQ) problems causes capacitor bank
failure, increase in losses at distribution level and electrical ma-
chines, vibrations, negative sequence currents in electrical ma-
chines, mainly rotor heating, de rating of cables, and so on [1].

It is necessary to feed pure sine wave current to the load from
the distribution level of power system, but this is not observed
when the power electronic converter-based loads are connected
to the system. In addition to various benefits of these power
electronics based loads, they gave rise to other PQDs. These
disturbances instigated the execution of standards and guidelines
such as IEEE 519 [2], for governing harmonics in the power
system along with the prescribed limits [3]. Due to the increase in
power demand, renewable energy resources are also integrating
with the grid which are also causing the PQDs.
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Numerous incidents of PQDs can cause inconvenience and
economic losses to users. For the mitigation of PQDs, an un-
interrupted monitoring of power signals is needed which is a
tedious work and cannot be done manually [4]. In this context,
it is essential to precisely classify the occurred PQDs. A suitable,
fast and perfect classification algorithm can be applied for real
time monitoring system of power grid [5].

PQDs identification includes features extraction of PQDs and
classification from extracted features. Selection of relevant fea-
tures must be ensured for getting higher efficiency of the classi-
fier. PQDs can consist of stationary signals (flickers), non station-
ary signals (oscillatory transients and notches) and combination
of both. Therefore many feature extraction tools are used in
literature: Fast Fourier Transform (FFT) [6], Stockwell Transform
(ST) [7–10], Wavelet Transform (WT) [11–14], Gabor Transform
(GT) [15], Hilbert Transform (HT) [16], Empirical Mode Decompo-
sition (EMD) [17–19], Short Time Fourier Transform (STFT) [20],
Singular Value Decomposition (SVD) [21], Kalman Filter (KF) [22].

FFT does not give good performance while monitoring the
PQDs that are non-stationary due the dependency on the res-
olution of window size. WT is noise-sensitive and non-suitable
for the proper selection of basic wavelet functions, further the
unique features of the PQDs cannot be obtained directly. Its
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performance can be improved by combining it with other op-
timization techniques, which increases computational burden.
Although ST is the improved version of WT and the features
extracted from ST can be distinguished, recognized and resistant
to noise, due to its computation complexity, its application in real
time environments are limited [23]. GT has fixed window size
which results in fixed resolution, which makes it non-suitable
for simultaneous PQDs [15]. In literature EMD is combined with
HT for time–frequency analysis, recognition and classification of
PQDs. On adding random noise to original signal efficiency of
the system increases but there is an increase in computational
burden [24]. STFT break down the non-stationary signals in to the
time–frequency domain by concatenating the stationary signals
with the sliding window. As the window size remain same for
all frequencies, it is not able to track the dynamics of the signals
properly [25].

Many classification techniques of PQDs from the extracted
features are given in the literature. This mainly includes Artificial
Neural Network (ANN) [26–28], Decision Tree [7,23,26,29,30],
Fuzzy Logic [31], Bayesian Classifier [32], Expert System [33],
Rule-Based System [34], Support Vector Machine (SVM) [8,12,15,
35]. Classifier must have two major characteristics one is adap-
tation for all type of disturbances that may occur and must have
higher computational accuracy.

Sometimes due to the high dimensionality of the data, ‘‘curse
of dimensionality’’ problem may occur. To solve this issue dimen-
sion reduction is employed to extract low-dimensional feature
set from a high-dimensional feature set. Canonical Correlation
Analysis (CCA) is used for feature extraction in multi-view learn-
ing [36]. It is used on datasets having two views. Two projections
are obtained each for each of the view such that the correlation
among them can be maximized when data is projected into
common subspace. It is an unsupervised learning method as class
labels are not utilized. As CCA can not be used for data having
more than two views, to incorporate these cases the Multi-view
Canonical Correlation Analysis (MCCA) was proposed [37]. For
MCCA, total correlations between any of the two views are max-
imized to obtain the projection for each view. As discriminant
informations are not taken into account which may causes lower
accuracy during classification. LDA is a supervised learning tech-
nique for single-view learning. In this case an optimal linear
transformation can be obtained to map the data into a subspace
by minimizing the within class distance and maximizing the
distance between classes simultaneously [38].

In PQDs, differentiation between various disturbance signals
which are similar (e.g. interruption, sag and signals with multiple
PQDs) is difficult. The signal feature extraction techniques which
are employed in the literature, extracts many irrelevant features.
To overcome this problem, this paper proposes LDA based data
reduction technique for feature extraction. The ratio between
class variance and within class variance are maximized for main-
taining the maximum class separability, which in result, to obtain
a lower dimensional space of the features [39,40].

The main contributions of the proposed work are listed as:

• Different types of PQDs are classified into 29 classes which
are more in numbers as considered in the previous articles
given in the literature. Also the signals with the noise levels
of 20 dB, 25 dB, 30 dB, 35 dB and 40 dB are taken under
consideration to check the accuracy of the classifier.

• This paper uses LDA based data reduction techniques to
reduce the features of the PQDs which in results reduces the
computational burden.

• Further to analyse the reduced PQD data, performance of
four different type of classifiers are considered i.e. KNN,
SVM, NB and RF. Accuracy of all the classifiers are analysed
using confusion matrix under different noise levels.

2. Related works

2.1. Canonical correlation analysis (CCA)

CCA attempts to find a projection pair so that the correlation
can be maximized between two-views of datasets in a common
subspace with reduced dimensions [36]. Suppose two matrices
Y1 = [y11, y12, . . . , y1n] ∈ ℜ

p×n and Y2 = [y21, y22, . . . , y2n] ∈

ℜ
q×n are defined to represent two views of data. Each column

in these matrices represent a sample. CCA seeks projections w1
and w2 one for each view by optimizing the linear correlation
coefficient [38] as shown in Eq. (1)

max
w1,w2

cov(wT
1Y1, w

T
2Y2)√

var(wT
1Y1)

√
var(wT

2Y2)
=

wT
1C12w2√

wT
1C11w1

√
wT

2C22w2

(1)

In Eq. (1), C12, C11 and C22 are the covariance matrices which can
be obtained as shown in Eq. (2)

C12 = Y1Y T
2 , C11 = Y1Y T

1 , C22 = Y2Y T
2 (2)

Eq. (1) can be written as

max
w1w2

wT
1C12w2 s.t. wT

1C11w1 = 1, wT
2C22w2 = 1 (3)

2.2. Multi-view canonical correlation analysis (MCCA)

CCA has a limitation of maximum two views of data [37].
To overcome this issue, MCCA try to obtain projections by max-
imizing the summation of pairwise correlations in projection
space. For p data samples having v views Yi|

v
i=1, where Yi =

[yi1, yi2, . . . , yip] ∈ ℜ
hi×p is data matrix for ith view. Yi|

v
i=1 are

transformed to wT
i Yi|

v
i=1 by the projections wi|

v
i=1. Total correla-

tion in common space can be maximized as

max
w1,w2...,wv

∑
i<j

wT
i Cijwj s.t. wT

i Ciiwi = 1, i = 1, 2, . . . , v

(4)

In Eq. (4) wi and wj represent e ith and jth view projections
respectively. Cij = YiY T

j is covariance matrix between ith and jth
view, and Cii = YiY T

i is data variance matrix of ith view. As in
CCA, the number of samples for each view should remain same
in MCCA, also it is an unsupervised technique.

3. Proposed algorithm for dimension reduction

3.1. Linear discriminant analysis (LDA)

It is the supervised approach of dimensional reduction tech-
nique. The aim of LDA is to maximize the separability of the
known classes in our target variable while at the same time
reducing dimensions of the data matrix. This can be attained
as: First, between-class variance is calculated, then within-class
variance is calculated and finally, a space with lower dimensions
is constructed to maximize the between class variance and min-
imize the within class variance. These steps are explained in the
next subsections.

3.2. Between-class variance (SB)

To demonstrate calculations of SB following data set has been
taken under consideration. A dataset X = [x1, x2....., xN ], and ith
sample is represented by xi and the total number of samples are
represented by N. Each sample has K features (xi ∈ ℜ

K ). Taking
an example of three classes for the dataset X, i.e C = 3 as,
X = [C1, C2, C3] as shown in Fig. 1 [40]. There are five samples
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Fig. 1. Block diagram of linear discriminant analysis.

for each class denoted as ni, number of samples for the ith class.
N can be calculated as, N =

∑3
i=1 ni.

The separation distance (pi − p) between different classes can
be calculated as [41,42]:

(pi − p)2 = (W Tµi − W Tµ)2 = W T (µi − µ)(µi − µ)TW (5)

where, pi is projection for mean of ith class:

pi = W Tµi (6)

and p is projection for total mean of all classes:

p = W Tµ (7)

W is transformation matrix of LDA and µi(1 X K) is mean of ith
class and can be calculated as:

µi =
1
ni

∑
xi∈Ci

xi (8)

and µ(1 X K) is total mean for all classes:

µ =
1
N

N∑
i=1

xi =

C∑
i=1

ni

N
µi (9)

Term (µi − µ)(µi − µ)T in Eq. (5) can be denoted as (SBi),
i.e. between class variance for ith class.

(mi − m)2 = W T SBiW (10)

SB for all the classes can be written as:

SB =

C∑
i=1

niSBi (11)

3.3. Within-class variance (SW )

Taking the case of jth class for calculating the within-class
variance (SWj), first total mean of the jth class is calculated. Than
it is subtracted from each sample of jth class [41,42]. As LDA seeks
for a lower dimensional space of order C-1, which minimizes the
within-class variance. (SWj) can be obtained as:∑
xi∈Cj,j=1...C

(W T xi − mj)2 =

∑
xi∈Cj,j=1...C

(W T xij − W Tµj)2

=

∑
xi∈Cj,j=1...C

W T (xij − µj)(xij − µj)TW

(12)

=

∑
xi∈Cj,j=1...C

W T SWjW

where, W T xi is the projected samples of each class. From Eq. (12),
SWj is obtained as:

SWj = dTj ∗ dj =

nj∑
i=1

(xij − µj)(xij − µj)T (13)
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Fig. 2. Proposed method for PQD classification.

where, xij represents ith sample in jth class and dj is centring data
of the jth class, given by:

dj = Cj − µj = [xi]
nj
i=1 − µj (14)

SW for all classes is obtained as:

SW =

3∑
i=1

SWi =

∑
xi∈C1

(xi − µ1)(xi − µ1)T +

∑
xi∈C2

(xi − µ2)(xi − µ2)T

+

∑
xi∈C3

(xi − µ3)(xi − µ3)T (15)

3.4. Creating lower dimensional space

Once the (SB) and (SW ) are determined, the Fisher criterion can
be expressed as:

J(W ) =
W T SBW
W T SWW

(16)

where, J(W) is the measure of difference between class variance
normalized by a measure of within class variance. To obtain the
maximum value of J(W), differentiate Eq. (16) and equate it equal
to zero.
∂

∂W
J(W ) =

∂

∂W

( W T SBW
W T SWW

)
= 0 (17)

⇒ (W T SWW )(2SBW ) − (W T SBW )(2SWW ) = 0 (18)

Dividing Eq. (18) by 2W T SWW , we get

S−1
W SBW − J(W )W = 0 (19)

⇒ S−1
W SBW = λW (20)

where, λ = J(W), is the eigen value of the transformation matrix
(W).

W ∗
= argmax

W
J(W ) = argmax

W

( W T SBW
W T SWW

)
(21)

From Eq. (21) information regarding LDA space can be obtained,
while eigenvectors (V = [V1, V2, V3.....VK ]) gives directions for
new space and eigenvalues (λ = [λ1, λ2, λ3.....λK ]) gives the
scaling factor, length, or the magnitude of the eigenvectors [43].

As each eigenvector represents one axis of the LDA space, and its
associated eigenvalue represents the robustness of this eigenvec-
tor, the eigenvectors (VL) having highest eigenvalues (L) are used
to obtain a lower dimensional space while others are neglected.

As shown in Fig. 1, the original data matrix (X ∈ ℜ
N×K ) is

reduced to the lower dimensional space of LDA (VL ∈ ℜ
N×L).

Mathematically it can be shown as [44]:

Y = XVL (22)

After projection data dimension changes to L, by ignoring the K-L
features from each of the samples. Hence, for C–Classes, there will
be C-1 projection vectors, therefore Eq. (20) can be generalized for
C-classes as:

S−1
W SBWi = λiWi (23)

where, λi = J(Wi) is the scalar quantity and i = 1, 2, . . . .C − 1.
Thus the optimal projection matrix W ∗ is the one whose columns
are the eigenvectors corresponding to the largest eigen values as:

W ∗

K×C−1 =
[
W ∗

1 | W ∗

2 | ....| W ∗

C−1|
]

(24)

4. Classification methods

In this section the machine learning classifiers which are used
at classification stage of PQDs are briefly explained. In this study
the results has taken on KNN, NB, SVM and RF classifiers.

4.1. KNN

It is considered as simplest and powerful machine learning
algorithm [45], that uses features distance for the classification
of samples in testing. Let us assume that x is a sample which
is to be classified using KNN technique. This can be done using
the majority voting from its K-neighbours. Probability of sample
x to be classified as class y is calculated on the basis of Euclidian
distance and can be given as:

p(y = j|F = x) =
1
K

∑
i∈A

I(yi = j) (25)

where, F is the total features for all the classes. Value of K should
be selected as which gives least classification error.

4
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Fig. 3. Samples of single PQDs with 20 dB noise.

4.2. NB

It is established on the basis of Bayes theorem and comes
under the category of supervised learning algorithms of machine
learning. It predicts on the basis of the probability of an ob-
ject [46]. As for a particular feature its occurrence is independent
from the occurrence of other features, it is known to be Naive
and based on Baye’s theorem called as Bayes. It generates its
own likelihood table by calculating the probabilities of the given
features. Further do the classification on the basis of posterior

probability given as:

y = argmax
z

[p(z|F ) ∗

n∏
i=1

p(yi|z)] (26)

where, argmax gives maximum value of target function for test-
ing sample z and y is predicted class. F is the total features for all
the classes and p is posterior probability. As there is three types of
Naive Bayes Model such as Gaussian, Multinomial and Bernoulli.
Gaussian NB model is used as a classifier in this paper.

5
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Fig. 4. Samples of multiple PQDs with 20 dB noise.

4.3. SVM

The aim of SVM is to locate the best line or decision boundary
known as hyperplane which can categorize n-dimensional space
into classes so that the new data points can be correctly cate-
gorized [47]. Gap from the margin is maximized to provide the
sufficient clarification so that the test samples can be classified

with better accuracy. Mathematically, separating hyperplane can
be described as:

h(Y ) = sign(W .Y T
+ b) (27)

where, Y is sample vector, as Y = [y1, y2....yq] having q features,
W is weights vector, as W = [w1, w2....wq] and b is a scalar bias.

6
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Fig. 4. (continued).

4.4. RF

It consist of number of decision trees for various subsets of
the dataset. It takes the prediction from all the trees and takes the
decision and gives the final output on the basis of maximum votes
of predictions. Therefore it is also known as ensemble learning
algorithm [48]. Ensemble learning algorithms has the advantage
of giving low variance and low bias estimation due to its bagging
approach. As a result, it shows less dependency on training data
and features of a single model. As the model is created from dense
randomness, it is robust against over fitting [49].

5. Generation of PQDs

A dataset of different types of PQDs for single and multiple
disturbances is required for the purpose of classification. The
dataset of PQDs have been created in MATLAB as per the IEEE-
1159 standards which is closely portray the real-time data. It
is widely used for estimating the efficiency of the classifier in
the previous studies. The generation of real PQDs data is limited,
which requires long monitoring time simultaneously at number
of locations. In this study most of the cases of PQDs i.e. 29 types

(consisting single and multiple PQDs) are generated in random
fashion by varying the parameters from there numerical models
as given in [50].

For the generation of data set, parameters are configured as:

• Samples for each class, Ns = 200.
• Sampling frequency, fs = 16 kHz.
• Fundamental frequency, f = 50 Hz.
• Number of cycles of the fundamental frequency in each class

sample, N = 10.
• Amplitude of the signals, A = 1 p.u.

This will give the data set with the dimensions of 5800 × 3200. In
order to approach the realistic case and also for the comparison
purpose, random noises are added to the generated signals to
attain the SNR of 20 dB to 40 dB. A specific sample for nine
single PQDs and twenty multiple PQDs with 20 dB noise with
their class labels are shown in Figs. 3 and 4 respectively as per
the mathematical models and parameters given in [50].

6. Classification of PQDs using LDA

As given in Section 3, to reduce the dimensions of PQDs
dataset LDA technique is used. As a result it lowers the calculation

7



G. Singh, Y. Pal and A.K. Dahiya Applied Soft Computing 138 (2023) 110181

Fig. 5. Confusion matrix for KNN classifier with 20 dB noise.

Fig. 6. Confusion matrix for NB classifier with 20 dB noise.

burden because there is no need of any feature extraction tool. For
classification of PQDs, the proposed method has three sections
such as: Pre-Processing, Dimension reduction and classification
as shown in Fig. 2.

6.1. Pre-processing

Twenty nine types of PQDs are generated using the mathe-
matical models given in [50] and the data set is created with 200
samples for each of the classes as per the defined parameters. The
name, class number and sample for each class of these generated
PQDs are also shown in Figs. 3 and 4. Ten cycles for each class
has been taken under consideration with a sampling frequency
of 16 kHz, so that every signal has 3200 samples. Therefore data
set of 5800 × 3200 is obtained. The fundamental frequency of the

system is considered as 50 Hz. To take the consideration of noisy
environment present in an electrical network, Gaussian white
noise is added to generated PQDs. Different amount of noises with
signal to noise ratio (SNR) of 20 dB to 40 dB are added in each
sample of all classes.

6.2. Dimension reduction

In this section, dimensions of the obtained data set has been
reduced as per the method explained in Section 3. SB and SW
are expressed in terms of Fisher criterion, which gives the eigen
values and eigen vectors of the transformation matrix. The lower
dimensional space is obtained using the eigen vectors corre-
sponding to the highest eigen values while neglecting the other

8
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Fig. 7. Confusion matrix for SVM classifier with 20 dB noise.

Fig. 8. Confusion matrix for RF classifier with 20 dB noise.

eigen vectors. Hence the lower dimensional data matrix with
dimensions 5800 × 28 is obtained.

6.3. Classification

The well-known robust methods such as KNN, NB, SVM and
RF are used for the classifications of the PQDs signals which are
briefly explained in Section 4. As the dataset has made from 29
classes, after the dimension reduction each class is represented by
28 features, resulting in a selected dataset, Y, with a dimension
of 5800 × 28. The reduced dataset is equally divided into two
parts, with 100 samples for each class is used for training and
100 samples for each class is used for testing. The classification
process is done in Python using Sklearn library. The accuracy

of each of the classifier under different noisy conditions are
observed and compared using confusion matrix.

7. Results and discussion

7.1. Performance of proposed method for different classifiers

The performance results of the proposed method i.e. LDA for
different types of classifiers under different noisy conditions are
shown in Table 1. It can be seen from Table 1 that the perfor-
mance of the proposed method of dimension reduction has higher
accuracy with different classifiers used in this paper. In order to
further observe the misclassification of PQDs, confusion matrix
for each of the case is obtained and it is found that classifica-
tion accuracy in each of PQD is relatively high and there is no

9
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Table 1
Accuracy comparison of different classifiers under noisy conditions.
PQD class
label

LDA+KNN LDA+NB LDA+SVM LDA+RF

20 dB 25 dB 30 dB 35 dB 40 dB 20 dB 25 dB 30 dB 35 dB 40 dB 20 dB 25 dB 30 dB 35 dB 40 dB 20 dB 25 dB 30 dB 35 dB 40 dB

C1 97 99 96 93 92 100 100 100 98 98 100 99 99 98 98 99 96 98 96 91
C2 96 94 94 97 94 100 100 100 98 97 97 100 100 97 97 97 97 96 98 88
C3 100 100 99 100 99 99 100 100 100 100 100 100 100 100 98 99 97 100 97 96
C4 98 99 96 96 97 100 98 99 98 100 100 99 98 99 100 93 95 100 93 97
C5 99 99 100 96 93 99 99 100 99 100 100 98 99 99 98 97 92 98 98 91
C6 100 99 99 99 94 100 100 99 99 100 100 100 99 98 99 97 97 99 94 89
C7 100 98 98 97 94 100 100 98 100 100 100 98 99 99 99 99 99 96 93 90
C8 92 94 94 95 91 100 98 96 99 97 99 100 98 98 99 92 93 92 96 93
C9 100 98 100 99 97 100 100 100 100 100 100 98 100 99 99 100 99 99 97 96
C10 99 99 97 92 90 100 100 100 100 97 99 100 100 99 97 99 100 95 100 90
C11 99 98 99 94 95 100 100 99 99 99 99 98 99 98 97 98 96 93 95 97
C12 100 99 100 99 97 100 100 100 100 100 100 99 100 99 99 100 98 100 97 96
C13 100 99 98 96 95 100 100 100 100 97 99 100 100 100 98 98 98 99 97 99
C14 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 99 100
C15 96 95 93 97 87 100 100 100 100 99 98 100 98 99 99 95 96 97 96 91
C16 100 100 99 100 99 100 100 100 100 100 100 100 100 100 100 100 99 100 100 93
C17 99 99 99 100 98 100 99 99 99 97 100 100 99 100 100 99 98 98 100 99
C18 96 97 96 96 92 99 97 98 98 95 99 99 100 98 99 99 97 94 98 90
C19 100 100 100 100 96 100 100 100 99 99 100 100 100 99 100 99 98 100 99 94
C20 96 98 93 96 92 99 100 100 98 97 100 100 98 98 96 94 96 95 95 97
C21 100 100 100 98 96 100 100 100 100 100 100 100 100 100 100 100 98 97 100 97
C22 95 95 96 99 95 99 100 99 100 98 100 100 99 100 97 94 98 97 96 95
C23 100 100 100 100 99 100 100 100 100 99 100 100 100 100 100 100 100 100 98 97
C24 98 95 96 98 98 98 99 99 98 98 98 99 99 98 98 97 96 94 94 96
C25 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100
C26 97 99 97 96 98 100 100 100 100 99 100 99 100 100 99 96 97 94 94 99
C27 100 100 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100
C28 99 98 98 95 97 99 100 99 100 99 99 100 99 99 99 100 93 96 99 96
C29 100 99 99 100 100 100 100 100 100 100 100 99 100 100 100 100 99 98 99 100

Accuracy (%) 98.48 98.27 97.79 97.51 95.62 99.72 99.65 99.48 99.37 98.79 99.55 99.48 99.41 99.10 98.79 97.97 97.24 97.38 97.17 95.06

Table 2
Accuracy comparison of different dimensional reduction methods.
Name of method Name of classifier

PQD with 20 dB noise PQD with 30 dB noise

KNN NB SVM RF KNN NB SVM RF

LDA 98.48 99.72 99.55 97.97 97.79 99.48 99.41 97.38
CCA 98.82 96.82 98 98 98.99 97.72 98 98
MCCA 95.44 98 83.86 98.75 94.55 97.44 80.13 98.2

excessive misclassification. For an example confusion matrices of
PQDs with 20 dB noise for four classifiers, i.e. KNN, NB, SV and RF
with LDA technique are shown in Figs. 5–8 respectively. It is seen
that the overall accuracy is 98.48%, 99.72%, 99.55% and 97.96% for
KNN, NB, SV and RF classifier respectively. Also, the performance
of NB classifier is better as compare to the other classifiers under
all noisy conditions when used with the proposed method.

7.2. Comparison with other dimensionality reduction techniques

Apart from LDA, other dimensional reduction methods such as
CCA and MCCA has been tested on PQDs with 20 dB and 30 dB
noise. Classification accuracy for each of the classifier (KNN, NB,
SVM and RF) has been obtained which are shown in Table 2. It
can be seen that out of the three dimensional reduction methods,
LDA (proposed method) gives higher accuracy with NB and SVM
classifiers and comparable results with KNN and RF classifiers.

7.3. Discussion and comparison with published articles

The performance of proposed method is checked on four type
of classifiers and their accuracy is compared with various meth-
ods presented in the literature as shown in Table 3 for noise
level of 20 dB and 40 dB. It can be seen from the table that
proposed method has most number of PQD events as compared to
the other methods shown in table. The accuracy of the proposed
method with NB classifier is highest with 99.79% and 98.79% for
20 dB and 40 dB noise respectively compared to published articles
given in Table 3 and also it is highest among all the classifiers
which are used for testing the proposed method. The accuracy
of the proposed method with SVM classifier has also shown
good results of 99.48% and 98.79% with 20 dB and 40 dB noise
respectively which is higher among all compared methods except
with Optimal Fast Discrete ST (MOFDST) [48], which is having
13 PQD events, but in this study 29 PQD events are considered.
The accuracy of the KNN classifier with the proposed method is
98.28% and 95.62% and for RF classifier is 98% and 95.06% with
20 dB and 40 dB noise respectively which is higher or almost
comparable as compare to the other methods presented in Table 3
with an advantage of most number of PQD events.

8. Conclusion

This paper proposes a novel method based on dimensionality
reduction for the detection and classification of the PQDs. The
dimension of the PQD data set has been reduced by removing
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Table 3
Performance comparison with published articles.
Feature extraction technique Type of classifier No. of PQDs Accuracy (%)

Noise Level 20 dB Noise Level 40 dB

Time and frequency domain statistical features
[26]

Artificial Neural Network (ANN) 8 – 96.03

Modified Optimal Fast Discrete ST (MOFDST)
[48]

RF 13 99.61 –

Finite Impulse Response-Discrete Gabor
Transform (FIR-DGT) [51]

Type-2 Fuzzy Kernel-based Support Vector
Machine (T2FK-SVM)

9 96.22 94.56

Tunable-Q Wavelet Transform (TQWT) [11] Multiclass Support Vector Machines (MSVM) 14 96.42 –
Strong Tracking Filters (STF) [52] Rule-Based Extreme Learning Machine

(ELM-RL)
20 92.6 98.8

Stockwell transform [53] Decision tree 7 98.2 –
Signal-Piloted Analog to Digital Converters
(SPADC) with Activity Selection Algorithm
(ASA) and time-domain statistical features [4]

SVM 4 98.05 –

Proposed method
LDA

KNN 29 98.28 95.62
NB 29 99.79 98.79
SVM 29 99.48 98.79
RF 29 98 95.06

the unnecessary features with the aid of supervised learning
technique, i.e. Linear Discriminant Analysis. As compare to other
methods of feature extraction, this method does not make use
of any arithmetically complex transformations. Therefore, the
reduced simple and unique features exactly show the PQDs to
enhance the recognition capability. The proposed method has
been analysed on 29 types of single and simultaneous type of
PQDs signals with different noise levels. The performance of the
proposed method has been tested with four types of machine
learning classifiers such as KNN, NB, SVM and RF using 100
samples of each disturbance type to validate the effectiveness.
The efficiency of NB classifier is more than 99% and highest
among all tested classifiers, efficiency of other classifiers are
also very good under all considered conditions. The performance
comparison with other methods presented in literature revealed
that the proposed method is distinguished in terms of accuracy
and number of PQDs tested. Thus, the LDA based classifiers can be
effectively implemented for the classification and the detection of
Power quality disturbances.
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