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Abstract
Incorporating Battery Energy Storage Systems (BESS) into renewable energy configurations offers numerous apparent 
advantages. Nonetheless, to fully capitalize on these advantages, it is imperative to implement management strategies that 
facilitate optimal system performance. Various approaches and methods can be employed to optimize the functionality 
of BESS within renewable energy systems (RES), encompassing specific dispatch goals as well as financial, technical, or 
hybrid objectives. These optimization methods are categorized into three primary groups: directed search-based (DSB), 
probabilistic, and rule-based strategies. Historically, research has heavily focused on tailoring systems based on the renewable 
energy sources for specific purposes, such as distributed generation (DG). This investigation not only offers a comprehensive 
overview of battery management measures but also assesses these endeavors in terms of their alignment with application 
objectives and the chosen optimization strategy. This approach unveils connections between distinct optimization goals 
and preferred strategies. The findings reveal that DSB approaches and control strategies, commonly employed for technical 
objectives, are more likely to succeed in addressing financial goals. Moreover, the extent to which a problem can be analyti-
cally defined emerges as a critical consideration. Upon comparing the merits and demerits of different reported optimization 
methodologies, it becomes evident that hybrid approaches, amalgamating the strengths of various optimization techniques, 
will increasingly shape future operational procedures. This study not only equips researchers with valuable insights into 
viable optimization strategies for forthcoming generation applications but also provides a cutting-edge overview of battery 
applications and optimization techniques.
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1  Introduction

Battery energy storage systems (BESS), commonly 
referred to as BESS, have become increasingly integral 
within contemporary electric power systems. Their impor-
tance originates from their distinctive capacity to manage 
the sporadic characteristics of renewable energy sources, 
offer technical assistance to power networks, and play a 
role in the advancement of intelligent grids [1, 2]. BESS 
has undergone extensive scrutiny across a spectrum of 
RES to enhance the integration of renewable energy. These 
cover a wide range of scales, spanning from small-scale 
distributed renewable sources [3] and micro-grids [4] to 
extensive independent HRES [5] and large-scale plants 
[6]. Furthermore, battery storage is increasingly being 
adopted for a range of essential functions within electric-
ity grids [7, 8], including addressing overloading in the 
transmission network [9], assisting in maintaining stable 
voltage and frequency, and postponing the necessity for 
upgrades to the transmission network [1].

Despite its pivotal role in managing renewable energy 
intermittency, the broader adoption of BESS faces a sig-
nificant hurdle: the relatively high investment costs asso-
ciated with these systems [10]. This challenge persists 
despite batteries being recognized as among the most 
effective solutions for addressing the variability of renew-
able energy sources. Another key concern revolves around 
the operational lifespan of the battery, raising questions 
about maximizing its utility throughout its functional 
span. This issue highlights the importance of optimiz-
ing battery size, an area previously examined in-depth by 
the authors [11]. The current study builds on this sizing 
exploration by delving into systems with pre-determined 
battery capacities.

A paramount consideration is the specific application 
of BESS, which significantly shapes the intended func-
tioning of these systems. Accordingly, the selection of the 
application target holds immense significance. Therefore, 
the review extensively investigates battery optimization, 
emphasizing the anticipated roles batteries must fulfill and 
exploring effective management strategies. This scrutiny 
centers on delineating the required functionalities of bat-
teries within different applications and assessing potential 
approaches for their efficient management.

Lately, there has been a notable increase in the num-
ber of research articles and evaluations focused on ESS 
or BESS, each concentrating on particular facets. Several 
of these inquiries explore synopses of BESS technology 
on a substantial scale [2, 12], systems for managing bat-
teries [13, 14], thorough examinations of costs over the 
lifespan and complex models for battery expenses [15, 
16], in addition to regulations related to energy storage 

[17]. Earlier studies exploring battery optimization have 
explored various renewable energy frameworks, including 
distributed energy systems, microgrids, and extensive RES 
installations, among others. In each of these contexts, bat-
tery storage emerged as a crucial component. For example, 
a thorough examination was undertaken on diverse ESS to 
enhance the utilization of wind power [18]. This analysis 
sought to accomplish objectives such as reducing fluctua-
tions, regulating voltage, mitigating oscillations, tracking 
loads, and similar goals. Additional research [19] concen-
trated specifically on ESS in the context of integrating 
wind power. This study not only identified appropriate 
ESS technologies but also delved into the complexities 
associated with designing, operating, and controlling wind 
power installations. Furthermore, there are assessments 
that particularly focus on specific functionalities, like the 
regulation of power output fluctuations in wind farms [20, 
21] and solar power plants [22], along with the utilization 
of batteries for maintaining frequency stability in contem-
porary electrical grids [23]. These focused review articles 
offer the advantage of delivering more precise summaries 
within their specific scope. Nonetheless, they might not 
offer a comprehensive depiction of the extensive array 
of conceivable BESS applications. Recognition should 
be given to the fact that there are evaluations specifically 
centered on BMS [24], with the goal of improving control 
and management at a more foundational level of battery 
cells. Nonetheless, this isn’t the primary emphasis of the 
current research. Additionally, it’s important to acknowl-
edge that there are reviews with a primary focus on BMS.

Furthermore, in addition to comprehensive evaluations 
at a large scale, the functionality of distributed energy 
systems has also been extensively addressed. This com-
prehensive exploration of applications includes an in-
depth analysis of BESS in residential solar PV systems, 
as outlined in the reference provided [25]. This reference 
underscores the economic viability of utilizing BESS in 
this context. Similarly, other research works have summa-
rized the implementation of ESS for PV based DG, with 
a primary focus on the advancement of BESS technology 
[3] and optimization strategies [26].

Moreover, the concept of HESS, particularly the inte-
gration of batteries and supercapacitors, has garnered sig-
nificant attention due to their complementary attributes. 
Extensive research has been conducted on microgrids [27], 
specifically concentrating on the applicability of HESS. A 
separate examination of HESS has also been conducted, 
exploring its relevance not only to the smart grid but also 
to other applications like electric vehicles [28]. Recent 
studies have delved into optimizing aged EV batteries 
and virtual power plants [29, 30]. However, it’s impor-
tant to note that while this review touches upon optimiza-
tion objectives and methodologies for HESS and virtual 
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power plants, the unique considerations associated with 
the operation of HESS.

The mentioned review articles possess a common charac-
teristic: each concentrates its attention in a separate energy 
setup or the application of ESS and BESS. However, there 
are still ongoing debates about the core purpose of inte-
grating batteries with RES and the rationale for selecting 
particular models or strategies to enhance battery perfor-
mance. This assessment aims to address these inquiries by 
amalgamating operational objectives and testing approaches 
from various battery evaluations.

The main aim of this study is to illuminate on the intricate 
connections between different BESS modeling techniques, 
the specific optimization goals chosen, and the preferred 
methodologies adopted to tackle the associated challenges. 
It is evident that the nature of the BESS application and its 
complexity significantly influence the selection of appropri-
ate BESS modeling approaches. Moreover, the integration 
of battery deterioration impacts into the modeling procedure 
heavily relies on the intended goals of the BESS applica-
tion and the extent of battery usage. This examination also 
encompasses an exploration of the underlying relationship 
between the chosen optimization goals and the recom-
mended BESS optimization strategies, which is a pivotal 
aspect of this review. This is because particular optimiza-
tion strategies are developed or selected with the purpose of 
addressing predefined issues.

Recent reviews have been published, concentrating on 
the wider uses of BESS. To emphasize the applications 
of versatile ESS in integrating renewable energy sources, 
a comprehensive summary was conducted. This summary 
was organized based on various storage technologies, includ-
ing batteries, hydroelectric pumped storage, compressed air 
energy storage, magnetic storage, and also biomass and gas 
storage [31]. Nevertheless, this method renders the task of 
pinpointing shared objectives and resolutions among ESS 
applications difficult, even though it streamlines the pro-
cess of comparing technologies. Another summary involving 
bibliometric analysis yielded intriguing insights into BESS 
integration. While survey-based methods offer statistical 
insights, they may not always uncover deeper underlying 
insights. Reference [32] provided an evaluation of the exist-
ing literature, focusing on diverse technologies and their 
roles in grid sustainability and renewable energy integration. 
Yet, it did not cover the crucial battery optimization process.

This study offers a comprehensive summary of specific 
BESS applications, categorized by modeling approaches, 
application targets, and optimization methodologies. Addi-
tionally, it includes a discussion of the fundamental connec-
tions between BESS optimization goals, approaches, and 
battery energy management advancements. Notably, this 
study concentrates on BESS and ESS within predetermined 
capacity RES. The following sections outline the structure 

of this review: Sect. 2 provides an explanation of the three-
layer BESS architecture. Section 3 discusses BESS mod-
eling techniques, while Sect. 4 summarizes various BESS 
applications for financial, technical, and hybrid purposes 
across diverse RES. Section 5 offers conclusions based on 
the findings presented. Section 6 delves into insights gained, 
and finally, Sect. 7 concludes with general remarks.

2 � The Operational Structure of BESS in RES

A diverse array of BESS objectives exists, involving battery 
optimization to achieve the best possible economic results 
encompassing battery optimization for attaining optimal 
economic outcomes, battery power regulation to adhere to 
specific performance benchmarks, and battery current and 
voltage management to ensure consistent outcomes within 
renewable energy systems. As an illustration, battery opti-
mization can be harnessed to achieve the most favorable 
economic results. In the realm of microgrid research [33, 
34], frequently involving the integration of battery storage, 
a widely adopted hierarchy with three control layers is preva-
lent. Positioned at the foundational layer, primary control 
primarily focuses on the fundamental control aspects of 
converters. On the other hand, the uppermost layer, known 
as tertiary control, serves as an intermediary connecting the 
primary control layer with the tertiary control layer.

This collection of research introduces a similar idea 
rooted in the three-tier control structure for a microgrid. 
Figure 1 displays the configuration of the three-tier control 
framework employed for overseeing battery management 
and control. The intentions of each tier are visualized using 
solid and dashed lines, symbolizing energy and information 
transfers, respectively.

This process occurs while the BESS undergoes charg-
ing or discharging. Simultaneously, the controller aims to 
maintain system stability by adhering to the reference signal 
from the secondary control, thus ensuring alignment with 
the set reference.

To achieve the highest level of RES performance, either 
economic or technical criteria can be employed, based on 
steady-state conditions. A reasonably sized battery can 
facilitate diverse energy management tasks, including 
but not limited to maximizing overall profits, minimizing 
operational expenses, peak shaving, arbitrage, and related 
activities.

It is important to highlight that this analysis primarily 
focuses on the function’s batteries should perform within 
a RES and the methodologies required to fulfill these func-
tions. The time spans under consideration for these tasks 
typically encompass minutes, hours, or even the entire pro-
ject lifespan. Secondary and tertiary controls oversee these 
aspects of the process.
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Hence, the goal of this research is to furnish a concise 
overview of the potential applications of BESS, with a pre-
dominant emphasis on exploring how BESS functions in 
secondary and tertiary control roles.

3 � Modeling of BESS for the Management 
of Energy Storage

A BESS comprises battery cells arranged in parallel and 
series configurations, complemented by converters for effi-
cient charging and discharging operations. Various battery 
technologies, such as lead-acid, NaS, lithium-ion, and redox 
flow batteries, find promising applications in grid and RES 
setups. Notable examples include lithium-ion, lead-acid, and 
NaS batteries. While this study does not extensively explore 

the impact of materials-physics models on BEMS, readers 
can refer to earlier comprehensive investigations for a deeper 
understanding. Understanding the underlying physics of dif-
ferent battery technologies is critical for informed decision-
making regarding state-of-charge limitations, round-trip effi-
ciency, degradation profiles, and other crucial factors. This 
consideration bears significant importance. For a deeper 
comprehension, readers are directed towards earlier com-
prehensive investigations as provided in References [7, 35, 
36]. Table 1 represents the comparison of promising battery 
technologies for ESS.

In BESS modeling, the battery characteristics are illus-
trated using mathematical equations. An indispensable facet 
of BESS management and regulation involves constructing a 
BESS model. These models are employed at varying levels 
of detail and complexity to meet the diverse demands of 

Fig. 1   Three-layer control in the coordination of BESS

Table 1   Comparison of promising battery technologies for ESS

Battery technology Advantages and Applications Disadvantages References

Lead-acid batteries Cost-effective; suitable for specific applications Lower energy density; higher self-discharge rate [37, 38]
NaS batteries High-temperature operation; suitable for large-scale 

applications
High cost; flammable electrolyte [38, 39]

Lithium-ion batteries High energy density; widely used in consumer elec-
tronics and various industries

Higher cost; sensitive to heat and high discharge 
rates

[38, 40]

Redox flow batteries High scalability; long cycle life Slow charging and discharging rates; higher cost [41–43]
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BESS management. Employing simplified models is suitable 
for broader energy management challenges, while employ-
ing more intricate models is justified for specialized control 
issues. For example, in the process of comparing diverse 
battery technologies, a fundamental and universal battery 
model was employed, featuring unique characteristics tai-
lored to each battery variant. This facilitated a meaningful 
and efficient comparative analysis [11]. For the purposes of 
this assessment, BESS models can be categorized into two 
groups: generic models and dynamic models. This classifica-
tion stems from the chosen modeling methods and simula-
tion settings, including the application of comparable circuit 
representations.

The typical model finds its most frequent application in 
representing stable-state scenarios for the purpose of energy 
management goals. On the other hand, dynamic models offer 
increased benefits in the representation of transient scenarios 
for the intent of dynamic control. The degradation processes 
of BESS are modeled in Sect. 3.3, emphasizing the impor-
tance of considering these processes during BESS operation.

It’s essential to note that this section will primarily focus 
on the BESS model concerning battery energy optimiza-
tion within renewable energy systems. Enhancing economic 
outcomes and technological advancements across renewable 
energy or power systems stands as a primary objective of 
battery energy optimization, alongside other objectives. 
This concept is distinct from battery management, which 
primarily seeks to maximize the performance and lifespan 
of a given battery [44]. For instance, research into battery 
fractional derivative models [45], SOC estimation [46], 
and thermal management [47] all fall under the category 
of battery management. Assumptions pertinent to battery 
energy optimization can stem from insights gained in bat-
tery management studies, where the aim is to optimize spe-
cific battery performance and lifecycle. These assumptions 
could involve factors like upper and lower SOC thresholds, 
efficiency patterns, degradation attributes, variables within 
the resistance–capacitance model, and so forth.

3.1 � The Universal Framework

The commonly employed standard framework for energy 
management of a battery predominantly centers on observ-
ing alterations in the battery’s SOC, resulting from the 
inflow or outflow of electricity. SOC, frequently used to 
assess a battery’s energy status, ranges from 0% (indicat-
ing complete depletion) to 100% (indicating full charge). 
It signifies the portion of the battery’s total capacity that 
has been charged. Expressing SOC can involve measuring 
the stored energy relative to total energy capacity, assuming 
constant battery voltage. Furthermore, changes in SOC over 
a duration can be depicted as a time sequence comprising 
distinct SOC levels. Charging leads to an increased SOC, 

while discharging leads to decreased SOC, as depicted in 
Eqs. (1) and (2) [48], which mathematically summarizes this 
process, considering the efficiencies associated with both 
charging and discharging processes (c and d).

PBESS denotes the power for charging and discharging the 
BESS, with positive values indicating charging and negative 
values denoting discharging over a specific time interval, Δt.

The abbreviation ECBESS stands for the energy level or 
capacity of the BESS. A crucial factor contributing to the 
broad acceptance of the general model is its capability to 
focus on BESS applications without specifying the exact 
technology or type of BESS/ESS. This capability is a pri-
mary driver behind the extensive usage of the general model. 
It allows for exploring how energy storage properties impact 
the entire system and determining which technologies best 
suit the application based on desired attributes identified 
using the general model.

In this study, several of the mentioned research works 
assumed constants c and d to simplify complexity. How-
ever, these values are influenced not only by battery technol-
ogy but also operational conditions, including temperature, 
current, and voltage. Consequently, certain investigations 
have employed more intricate methodologies to gauge these 
efficiencies. Several of these methods encompass processes 
such as parameter derivation from empirical data [7, 49] or 
the utilization of curve fitting [50].

3.2 � Dynamic Models

While the comprehensive structure aptly clarifies the con-
nection between the power used for charging and discharg-
ing the battery and its SOC, it assumes that SOC changes 
resulting from energy surpluses or deficits are universally 
achievable. In other words, it presupposes the feasibility of 
achieving any required voltage or current adjustments to 
accommodate anticipated SOC changes.

In cases where precise control of BESS current and volt-
age parameters, including transients, is essential, dynamic 
models can be employed for BESS modeling [51]. Among 
the frequently used methods for constructing dynamic mod-
els are equivalent circuits.

The field of academic research offers a range of dynamic 
models, including simplified, first-order, and models with 
dynamics of the second order. Figure 2 portrays a simplified 
rendition of a dynamic model suitable for battery analysis. 

(1)

Charging condition SOC(t + Δt) = SOC(t) +
P
BESS

(t)�
c
Δt

EC
BESS

(2)

Discharging condition SOC(t + Δt) = SOC(t) +
P
BESS

(t)Δt

�
d
EC

BESS
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This model comprises an equivalent voltage source Voc and 
a series-connected internal battery resistance Rin [52, 53]. 
When transient effects can be disregarded, utilizing this sim-
plified dynamic model, governed by Eq. (3), proves highly 
advantageous.

(3)v
BESS

= v
oc
− iRin

(4)v
BESS

= v
oc
− iR

in
− v1 − v2

(5)i = i
R1 + i

C1 = i
R2 + i

C2

(6)v̇1 =
i

C1

−
v1

R1C1

As shown in Fig. 3, both first-order and second-order 
dynamic models incorporate RC networks [54–56] to 
address transient impacts. By utilizing Kirchhoff’s princi-
ples in the relevant circuit, it becomes possible to formulate 
a series of differential equations, which can subsequently 
define the voltage’s dynamic attributes concerning time. 
Equations corresponding to the second-order equivalent 
circuit model depicted in Fig. 3 can be formulated using 
Eqs. (4) to (7) [54], where denotes the time derivative of V1.

While the overarching model effectively elucidates the 
connection between the power used for charging and dis-
charging the battery and its SOC, it operates under the 
assumption that alterations in SOC due to excess or defi-
ciency of energy are consistently attainable. In simpler 
terms, it presupposes the attainability of any voltage or cur-
rent shift to accommodate anticipated SOC changes. When 
precise control of BESS’s current and voltage parameters, 
including transients, is crucial, dynamic models, like those 
utilizing equivalent circuits, come into play for BESS mod-
eling [51].

Diverse dynamic models are available in academic 
research, including simplified versions, first-order models, 
and second-order models. Figure 2 illustrates a simplified 
dynamic model suitable for battery analysis. It is represented 
like a practical volatge source having a open circuit volatge 
and an internal series resistance [52, 53].

For an in-depth comprehension of battery operations, 
users turn to first-order and second-order equivalent circuit 
battery models, often involving solving a set of differen-
tial equations. Another widely-used dynamic technique is 
state-space modeling. It condenses a group of differential 
equations into a concise matrix equation by choosing an 
appropriate state variable [57] for determining the solution. 
The surge in these techniques’ popularity can be attributed 

(7)v̇2 =
i

C2

−
v2

R2C2

Fig. 2   First order equivalent circuit of BESS

Fig. 3   Second order equivalent 
circuit of BESS
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to commercial software’s availability for swift simulation 
of intricate circuits. MATLAB/Simulink and PSCAD are 
noteworthy examples of such software.

3.3 � Battery Degradation Models

Over time, a battery’s effectiveness diminishes, primarily 
due to chemical processes occurring in its electrolyte, anode, 
and cathode [58]. Battery deterioration can be classified into 
two forms: calendar aging and cycle aging. Calendar aging 
denotes the natural degradation of a battery as time passes, 
regardless of whether it is cycled or not. This aging pro-
cess is impacted by temperature and the battery’s SOC [59]. 
Cycling aging occurs during charge and discharge cycles. 
Its pace is determined by discharge depth, average state of 
charge per cycle, and cell temperature. Frequent cycles and 
deeper discharges, particularly below 20% state of charge 
[60] (varies by battery type), significantly reduce the opera-
tional life of batteries, particularly in lead-acid and lithium-
ion variants [15, 60]. These cycles also diminish the bat-
tery’s energy storage capacity.

Capacity fade, the reduction in storage capacity, signifi-
cantly impacts battery deterioration in system modeling [61, 
62]. Generally, if a battery’s usable capacity falls below 80% 
of its initial value, it’s considered reaching the end of its 
service life and replacement is recommended [63, 64], irre-
spective of its type. This remains accurate for both lead-acid 
and lithium-ion battery types.

Hence, it is essential to consider degradation when over-
seeing energy for extended projects and performing simu-
lations spanning prolonged durations. The battery’s SOH/
SOC and proves effective in gauging battery degradation 
[49]. SOH is commonly defined using the reduction in rated 
capacity, with a new battery exhibiting Cact = Cnom, resulting 
in a 100% SOH. This SOH concept, as expressed in Eq. (8) 
[63], equates Cact with Cnom for a new battery and reaches 
0% SOH at Cact = CEOL, denoting the conclusion of its capac-
ity for usable life. the end of its usable life capacity. Sub-
sequent capacity losses are assessed through experimental 
data, quantifying the influence of cycles on the reduction of 
capacity. Previously, Nuhic et al. [63], it’s common practice 
to consider 80% of a new battery’s nominal capacity as its 
end-of-life capacity. This value is integrated into Eq. (9).

Alternatively, an indicator of deterioration can be derived 
from the actual usable capacity of the battery. This capacity 
reflects the difference between a brand-new battery’s nomi-
nal power and the incurred capacity loss [65]. As previously 

(8)SOH =
C
act

− C
EOL

C
nom

− C
EOL

100%,C
act

≥ C
EOL

(9)C
EOL

= 0.8C
nom

mentioned, battery aging involves both calendar and cycle 
degradation [66]. However, cycle deterioration is the pre-
dominant contributor to battery decline, and it is harder 
to measure. Consequently, various techniques have been 
developed to evaluate BESS deterioration due to cycling. 
The rainflow counting algorithm, often applied in structural 
engineering, power electronics, and mechanical vibration 
analysis, is commonly used [67, 68]. This method counts 
cycles occurring over a defined timeframe [67, 68], spanning 
a wide range of applications. Studies akin to this one has 
assessed these models for the optimization of BESS within 
a microgrid [69].

The effective management of battery degradation within 
BESS has become a significant aspect of optimizing their 
performance. One prevalent approach involves quantifying 
battery decline as a cost, which is then integrated into the 
optimization model. This strategy is commonly employed 
in various studies. For example, researchers have integrated 
a weighted Ampere-hour (Ah) aging model for BESS into 
multi-objective optimization scenarios [70]. One of the pri-
mary goals is to mitigate battery deterioration through opti-
mized charge–discharge strategies, which contribute to the 
formulation of battery energy management systems [71]. 
A novel approach involves the use of a dual BESS system, 
where each unit alternates between charging and discharging 
states [72, 73]. Additionally, the emergence of HESS is gain-
ing traction. These systems, which incorporate technologies 
like ultracapacitors (UCs) for high-frequency events, offer 
a promising avenue to enhance battery lifespan [74, 75]. 
Table 2 demonstrate a comparison of approaches utilized 
for the management of battery degradation.

4 � BESS Energy Management Targets

BESS have a notable role within renewable energy setups, 
providing a spectrum of benefits that span from enhancing 
the overall profitability of the system to facilitating functions 
like peak mitigation, power steadiness, and regulation of 
grid frequency. The designated roles of BESS within a sys-
tem are significantly shaped by the precise operational needs 
of the renewable energy configuration and the capabilities 
of the BESS itself. This section undertakes an evaluation of 
research projects emphasizing battery energy management. 
The assessment is structured according to the objectives 
guiding BESS management, which encompass financial, 
technical, and combined goals.

4.1 � Economic Objectives

Owing to the substantial influence of economic efficacy, 
multiple research investigations have integrated financial 
aspect to enhance battery efficiency. Additionally, a diverse 
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range of financial indicators have been employed as objec-
tives in battery optimization. Examples of these indicators 
encompass minimizing total operational costs [84], maxi-
mizing operational profits [85], and maximizing the lifetime 
value of energy storage [86], among others. Table 3 offers 
an overview of pertinent literature focused on battery energy 
management with financial goals, including more detailed 
indications.

Of note, the most frequently pursued objective among 
the numerical indicators listed in Table 3 is the reduction of 
total operating expenses (equivalent to maximizing operat-
ing profits). However, different research has proposed vary-
ing definitions of operating expenses and the constituent 
elements of operating costs. For instance, in Ref. [84], the 
overall microgrid cost minimization encompasses factors 
like fuel costs for diesel generators, power exchange costs 
with the utility, and startup/shutdown costs of microgrid 
power sources. Conversely, distinct research [87] calculates 
total cost considering factors such as profits from power 
market participation, battery deterioration costs, and bat-
tery operation costs. As such, Table 3 has been constructed 
to underscore optimization goals in each study by compre-
hensively outlining the specified indicators, enabling the 
identification of the distinct components contributing to 
these objectives.

Numerous factors underpin the incorporation of diverse 
aspects in these investigations targeting specific battery 
applications. Initially, this phenomenon can be attributed 
to the integration of numerous components within the mod-
eled system. For instance, in the microgrid scenario outlined 
in Reference [84], the inclusion of micro-turbines and fuel 
cells necessitated the consideration of fuel costs, alongside 
unit start-up and shut-down expenses. Conversely, a micro-
grid solely reliant on photovoltaic cells for power weighed 
electricity market gains and battery degradation costs [86]. 
The inclusion of controlled load delays in the total cost was 
essential, given their integral role in the simulated system 
[88].

The diversity in system types and their operational intri-
cacies compels researchers to opt for specific metrics in their 
studies—this constitutes the second noteworthy aspect. An 
illustrative example is the investigation into whether engage-
ment in the energy market is part of the operation of hybrid 
systems. This assessment decides the relevance of the cost-
to-profit trade-off inherent within the dynamics of the power 
sector. Analyzing Table 3 reveals that for systems linked to 
utilities, the majority of studies factored in power consump-
tion-associated costs and profits. However, when exploring 
autonomous hybrid renewable energy systems, considera-
tions of electricity cost and profit often take a backseat in 
BESS optimization endeavors [89, 90]. Thirdly, specific met-
rics are integrated as a consequence of establishing a defined 
optimization objective for the BESS to achieve, or due to 
setting specialized goals for the renewable energy system. 
These objectives can be fulfilled either by the BESS itself or 
the RES. An excellent illustration of a specific objective is 
the involvement of the BESS within the market for reserve 
and regulation services [91, 92]. Participating in this mar-
ket aims to enhance profits, and thus this type of objective 
becomes part of the BESS management’s financial targets. 
In scenarios where this energy scheme was applied with dis-
tinct focuses, such as the consideration of feed-in-tariffs to 
minimize overall load delivery costs [93], specialized objec-
tives are taken into account. Additional distinct objectives 
such as the expense related to curtailing renewable energy 
[90], the outlay associated with unmet energy demand [78], 
and the expenditure linked to emissions of gases that con-
tribute to the greenhouse effect [94], though not included in 
Table 3 due to their infrequent use, are noteworthy. Addi-
tional attention to these aspects introduces supplementary 
costs or gains that must be accounted for in the overarching 
goal. Furthermore, recent studies tend to give more promi-
nence to battery deterioration [76, 78, 95]. As discussed in 
Sect. 3.3, these investigations take into account the costs 
related to battery degradation as an extra specific considera-
tion during the computation of total expenses and benefits.

Table 2   Battery degradation management strategies

Strategy Approach References

Cost integration Battery decline quantified as a cost integrated into optimization models [70]
Lifespan, depreciation, usage, wear costs Consideration of various costs related to battery degradation, including lifespan cost, 

depreciation cost, usage cost, and wear cost
[57, 76–78]

Mitigating degradation Techniques to minimize battery degradation, including avoiding deep discharge cycles 
and reducing charge–discharge cycle frequency

[79, 79–83]

Optimized charge–discharge strategies Optimization of charge–discharge patterns for effective management of battery deterio-
ration and formation of battery energy management systems

[71]

Dual BESS approach Implementation of a dual BESS system where units alternate between charging and 
discharging states

[72, 73]

HESS Incorporation of technologies like UCs in HESS to enhance battery lifespan in high-
frequency event scenarios

[74, 75]
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Table 3   Relevant literature on battery energy management for financial goals

References Key findings

[84] The (θ)-PSO method proposed in this study was employed to address an optimal operation management challenge with the objec-
tive of minimizing the microgrid’s overall operating cost

[89] An analysis was undertaken to assess the financial viability of utilizing ESS for both main reserve and peak-shaving purposes
[104] To gauge the efficacy of the suggested optimization technique, an 8-bus system was employed. Findings demonstrate that employ-

ing both photovoltaic systems and batteries can alleviate transmission congestion, lessen peak load, and diminish the need for 
expensive thermal units

[105] The recommended control strategy for the weekly dispatch of the BESS involves a time horizon that not only reduces fuel consump-
tion by 2% but also enhances the capacity to accommodate wind power output by 20% compared to scenarios without BESS 
integration

[90] In spite of the initial greater upfront expenditure associated with the battery, the results indicate that the technical and financial 
benefits of a properly optimized BESS technology will outweigh the costs incurred over the battery’s lifespan

[78] The findings indicated that predictive techniques yield greater cost savings compared to non-predictive dispatch strategies, particu-
larly in systems with higher renewable energy penetration

[95] Conventional generators demonstrated greater commitment to the project to maximize the anticipated profitability of the VPP. This 
inclination arises from the considerably lower fuel costs for regular generators compared to battery degradation expenses

[76] A controlled depreciation cost model was developed for lithium batteries, enhancing cost efficiency and mitigating battery aging 
through an optimized model. These advantages were achieved through the synergistic combination of the two models

[106] In terms of both effectiveness and efficiency, the ADP-based real-time energy management technique exhibited superior perfor-
mance compared to the DP and PSO methods. Furthermore, this method demonstrated resilience against uncertainties arising 
from PV, wind generation, energy demand prediction errors, and electricity price prediction errors

[107] Assessed using three different approaches – first level, bilevel without and with SOC regulation – the suggested method exhibited 
superior performance by reducing overall operational costs and enhancing microgrid reliability

[85] A two-scale DP strategy emerged as an optimal approach for power management in hybrid wind-battery systems. In contrast to the 
traditional 24-h DP strategy, this approach demonstrated substantial performance improvements

[108] The described technique offers the potential to optimize the dispatch of electricity from wind farms, obviating the need for dispatch 
schedule adjustments. Additionally, this approach fosters wind power expansion within the grid, bolstering its competitiveness 
against alternative energy sources

[54] The findings underscored the significance of factoring in battery wear and tear costs within the management plan, ensuring battery 
usage aligns with income surpassing expenses

[109] Within the realm of a user-driven microgrid power market, an inventive economic model was introduced. This model incentivizes 
battery installation, enabling energy trading within microgrids

[110] Simulation outcomes highlighted that synchronized optimal dispatch of ESS substantially decreased microgrid power costs com-
pared to individual microgrid interactions with the grid

[111] The study’s results identified inaccurate energy price forecasts and constrained distribution network capacity as the foremost factors 
curtailing anticipated benefits

[112] The proposed approach was assessed using the IEEE test system encompassing 37 nodes. Optimization outcomes demonstrated 
lowered operational costs across various BESS penetrations while maintaining voltage drop within permissible limits

[113] The recommended algorithm possesses versatility to collaborate with diverse batteries, each characterized by distinct attributes, 
yielding cost savings in power consumption

[114] Simulation results depicted a non-linear increase in financial gains with declining battery prices. Cooperative management of EVs 
and BESS proved effective in preventing performance degradation for both systems

[115] Simulation findings illuminated that high PV penetration diminished benefits for PV-equipped households. Furthermore, analysis 
indicated lower profitability for sole battery-equipped households compared to those with both PV and batteries

[116] The simulation results revealed that opting for battery purchase proved to be the superior financial choice compared to feed-in-tariff 
and net electricity metering programs that excluded battery acquisition

[117] The simulation outcomes indicated a potential reduction of 41.68 percent in annual power expenses with the proposed solution, as 
opposed to scenarios devoid of both BESS and PV

[93] The decision to incorporate battery replacement costs into the BESS management plan was driven by its substantial impact on the 
overall operational expenditure, in alignment with the findings

[118] The simulation results validated the effectiveness of the recommended management strategy, facilitating PV utilization, peak 
demand reduction, and containment of power fluctuations arising from PV generation

[119] The utilization of PV system simulation software yielded more favorable results, with increased yearly electricity production com-
pared to actual PV power data. This achievement was attributed to a higher annual electricity output generated

[120] End users were provided access to a decision support tool designed to assist them in optimizing their expenditure on PV-battery 
systems, thus reducing their monthly power expenses
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4.2 � Technical Objectives

The application of BESS is utilized not only the purpose of 
attaining financial objectives but also enhancing the techni-
cal efficiency of RESs. The primary objectives encompass 
reducing electricity losses within distribution networks, 
ensuring more consistent power generation from renew-
able sources, and more. The aggregated research findings 
concerning battery energy management are consolidated 
in Table 4, with a specific focus on achieving technical 
aims. Generally, applications aimed at technical objectives 

predominantly address secondary and tertiary control. These 
two upper control tiers are contingent on the BESS opera-
tional framework, as elaborated in Sect. 2. Concerning BESS 
control objectives, the objectives of these applications can 
be categorized into three major groups: I optimizing energy 
utilization; ii enhancing power profiles; and iii improving 
various performance aspects.

The majority of tertiary control objectives, such as 
optimizing battery schedules to improve the operational 
effectiveness of RESs on an hourly or daily basis, involve 
longer-term horizon optimization. This applies to most 

Table 3   (continued)

References Key findings

[86] The proposed solution led to a substantial increase of approximately 160% in the battery’s useful life compared to standard set-point 
control methods

[57] Leveraging wind power and market data from Alberta, Canada, the recommended MPC limited optimizer demonstrated superior net 
daily profits with minimal trade-offs throughout the BESS’s lifespan

[121] In situations where precise predictions based on statistical knowledge of the system are challenging, the described method can be 
employed. Furthermore, incorporating relevant statistics into the algorithm’s design process enhances the proposed algorithm’s 
effectiveness

[122] Findings from unit commitment research have been integrated into the BESS dispatch plan for a wind farm. The bidirectional 
energy flow capability enables power exchange in both directions

[123] A resource consolidation and utilization approach for home energy systems has been formulated, resulting in reduced operational 
expenses while accounting for battery cycle aging costs

[124] Simulation results indicated that energy price unpredictability exerted a more significant influence on community battery perfor-
mance than power generation and consumption levels

[125] The introduced reinforcement learning-based charging and discharging method effectively managed nonlinear battery behaviors, 
improved battery wear-out modeling accuracy, and addressed energy cost unpredictability

[126] The suggested ESS management strategy succeeded in decreasing average power consumption and strategically deferring flexible 
load activation based on electricity prices

[127] Data derived from the degradation experiment of a lithium-ion battery were employed for investigative purposes. A two-phase 
decomposition approach was introduced to streamline the process of solving time-domain problems

[91] The impact of integrating energy, reserve, and regulation markets into battery storage system profits was demonstrated through 
market participation, influencing profits through battery dispatch

[128] Simulation outcomes revealed that the suggested solution tended to overestimate BESS earnings by offering multiple services, even 
though the model provided an accurate earnings estimate

[92] The recommended method aims to maximize long-term operational profits, enabling battery involvement in energy and regulation 
markets beyond fixed daily cycles, fostering enhanced market participation

[87] Over two consecutive days, a bilevel supervision plan was implemented to maximize operational profitability, while considering the 
limitations of traditional generator ramping capabilities and network constraints

[129] An optimized planning and control method was developed to enable BESS to participate in the primary frequency regulating mar-
ket while maintaining an optimal SOC

[130] Findings indicated that the utilization of CAES reduced diverted wind energy by 30%, while NaS batteries only achieved a 4% 
reduction

[131] Simulation results demonstrated the effectiveness and reliability of the proposed two-stage coordinated microgrid operating 
approach, incorporating ESS supervision and direct load control

[132] An optimization technique was devised to strike a profitable balance between minimizing ESS loss and optimizing revenue from 
power sales, achieving an optimal trade-off between the two

[88] Comparative results revealed that the proposed integration of joint load scheduling and ESS control yielded superior financial per-
formance compared to systems lacking storage or load scheduling, or those with storage alone

[133] The showcased real-time coordination system has the potential to enhance wind power’s role in frequency control, facilitating 
increased frequency control capability without adversely affecting battery longevity

[94] Research outcomes underscored that lithium-ion batteries paired with mono-crystalline silicon photovoltaics represent a promising 
technology combination capable of reducing carbon emissions by 26%
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Table 4   Relevant literature on battery energy management for technical goals

References Key findings

[96] When compared to an unoptimized technique, employing the Hyper-Heuristics algorithm resulted in a reduction of over 5% in 
consumption

[97] Effective utilization of a battery in a PV generation system hinged on appropriate charging and discharging timing, leading to 
decreased distribution system line losses

[134] The proposed multi-timescale approach synergizes the gradual correction actions of OLTC post-emergency with swift corrective 
actions of BESS and PV systems are utilized to reduce line losses and ensure the stability of voltage levels

[135] Research findings demonstrate the optimization of microgrid costs by replenishing the battery with excess electricity from PV 
systems during periods of on-peak and MID-peak TOU

[72] With an increase in predicted wind speed, the recommended dual-BESS technique exhibited smoother output, closely aligning with 
optimal charging and discharging timing

[74] Employing a semi-Markov process model for representing PV power, accounting for intermittent factors like cloud cover, was 
enhanced through the use of an SDP planner over a rule-based planner, yielding efficiency gains and reduced fuel usage

[98] The outcomes highlight the potential for substantial monetary rewards to be provided to household users, encouraging them to 
adopt storage solutions to trim the highest energy demand applications while utilizing TOU tariffs

[136] The utilization of the system breakdown technique was expected to extend the lifespan of lithium-ion batteries to around 
10–20 years, given mild cycling and infrequent deep drain cycles

[137] The proposed method exhibited superior peak shaving performance compared to older techniques such as PSO, GA, and FLC 
controller

[138] Traditional approaches like fixed demand boundary management and specified power barrier control demonstrated lower effective-
ness compared to the innovative method

[139] Daytime power outages were managed by employing the biomass energy generator as a local AC bus, while the load was powered 
using the photovoltaic generator and battery

[140] A commercial space was used for a study involving a 20 kW (1 MWh) capacity battery, showcasing significant reduction in feeder 
peak load with the suggested alternative

[81] The developed optimal control technique enabled wind farms to function akin to traditional generators, but with frequent battery 
charging and discharging. This underscores the need for long-life cycle battery technologies in the future

[99] The proposed control approach effectively met targeted dispatch goals and maintained a favorable SOC range for the BESS
[141] The economic advantages of BESS were clear in offsetting inaccuracies in wind power forecasts. Lead-acid and lithium-ion bat-

teries, despite having shorter operational lives and higher initial expenses, demonstrated better performance compared to NaS 
batteries in simulated setups

[82] Assessing the effectiveness of BESS in harnessing wind energy hinged on three primary metrics: estimated wind power threshold, 
expected wind power insufficiency, and likelihood of wind power shortfall

[142] The suggested technique effectively regulate voltage, minimize peak power, and stabilize power distribution by minimizing active 
power deviation between the transformer and standard power graph

[71] Enhancing wind power management, a distinctive BESS dispatch strategy shifted charge and discharge phases from pessimistic to 
optimistic scenarios to address wind power variability

[80] In the recommended dispatch strategy, a LP approach identified a minimum demand threshold for cost-saving, utilizing projections 
of PV generation and anticipated load for the upcoming day

[143] The SMPC controller introduced enabled the wind farm to provide an appropriate dispatch curve, allowing it to operate similarly to 
a conventional power plant

[73] Two distinct methodologies for BESS dispatch were proposed to monitor predefined production. The concurrent state-swapping 
approach demonstrated better technical performance compared to the asynchronous method, whereas the asynchronous state 
swapping method exhibited superior financial outcomes

[144] Employing a knowledge-based method not only fulfills island energy requirements but also reduces wind energy losses and load-
shedding incidents, all achieved with a 20% reduction in storage space

[145] Addressing power fluctuation extraction on tie-lines using storage, results indicated that coupling with DR programs significantly 
reduces traditional energy storage system sizes in microgrids. This enhancement also bolsters power quality, leveraging the 
responsiveness of DR programs to energy consumption changes

[83] The dual-layer control strategy’s initial layer determined BESS power commands for mitigation needs. The subsequent layer 
revealed that incorporating state-switching limitations tied to remaining energy diminishes the lifespan of battery level transitions 
in BESS

[102] Simulation outcomes showed that a combination of BESS and SFES is more efficient for regulating wind farm output compared to 
exclusive BESS utilization, in contrast to solely using BESS

[146] This study systematically defined three operational states—regular, notification, and alert—for the HESS
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tertiary control goals. For example, the financial objec-
tives discussed earlier fall under the tertiary control cat-
egory. Regarding technical objectives, tertiary control also 
encompasses energy optimization. The collected energy 
often functions as a measure to evaluate the achievement 
of objectives. As an illustration, in Reference [96], the bat-
tery was deployed to reduce the utility company’s energy 
consumption, and in Reference [97], it was used to mitigate 
line losses within the distribution network.

A power transmission or distribution system experi-
ences losses in real and reactive power, referred to as line 
losses, during a specified timeframe. This metric is pivotal 

in gauging network operational efficiency. Metrics relying 
on total energy accumulated contrast with financial goals as 
they do not take power expenses into account. In addition 
to the storage of energy, ensuring energy equilibrium is a 
fundamental objective of BESS within RESs. An instance 
is seen in Reference [74], where the battery discharges to 
balance microgrid electricity production and consumption.

Furthermore, power profile characteristics constitute 
another technical aspect vital to optimization (measured in 
kW or MW). These qualities encompass peak demand reduc-
tion, targeted dispatch tracking, and fluctuation mitigation. 
Peak shaving exemplifies battery utility by storing non-peak 

Table 4   (continued)

References Key findings

[147] The control strategy suggested using ADALINE demonstrated superior performance in both accuracy and speed when tracking 
wind farm production, surpassing the FLF-based technique. Furthermore, it showcased decreased utilization of battery capacity as 
opposed to the FLF-based method

[148] Economic evaluation demonstrated that implementing the suggested incentive program would yield profit, with potential for 
increased profitability by aligning the distribution plan with market prices

[149] The selected control loop adeptly followed the prescribed wind power dispatch while maintaining BESS SOC within intended 
ranges

[150] The suggested rule-based control mechanism vigilantly managed required dispatch power while ensuring BESS SOC and current 
remained within reasonable thresholds

[100] The simulation outcomes demonstrated that the suggested approach for reducing PV fluctuations achieves similar results to the 
moving average technique, all while demanding a smaller BESS capacity

[75] By implementing the proposed power management method, the necessary power capacity of the UC could be decreased to only 
20% of the VRB’s capacity, effectively averting the VRB’s operation at low power thresholds

[66] Diverse suggested strategies to provide primary frequency service and restore SOC could potentially increase the operational life of 
a lithium-ion battery by 5 years, given the gradual reduction in its energy storage capacity

[151] Employing the BESS for frequency control entailed a comprehensive assessment of power loss, system efficiency, reliability, and 
associated costs linked to grid-connected BESS utilization

[152] The proposed approach comprises two control modes: the first mode fine-tunes the ESS to counter frequency fluctuations, while the 
second mode prioritizes energy conservation to prevent further frequency deviations

[153] Research demonstrates that the BESS can rapidly recoup expenses associated with frequency regulation operations, with minimal 
impact on system frequency

[154] Combining frequency control and peak shaving can yield earnings up to 10% higher than using frequency control alone, and twice 
as high compared to standalone peak shaving

[55] The synchronized control approach for multiple distributed BESS exhibits superior power quality enhancement compared to the 
uncoordinated control strategy, especially when used alongside an on-load tap changer

[56] Integration of a BESS into a wind-and-diesel-powered system enhances power quality and system reliability when operating on 
wind power alone

[155] Effective management of a 0.6 MW/0.76 MWh BESS within a DER featuring 3.15 MW of PV has negligible impact on battery 
charging cycles

[77] The developed online power management approach enables real-time monitoring of SOC/SOH across various scenarios, effectively 
preserving battery capacity from degradation

[156] A decentralized real-time technique was implemented in lieu of the conventional central controller, reducing communication stress 
and enhancing responsiveness

[157] The adaptable method accommodates seasonal load variations while ensuring optimal BESS unit usage
[158] The evolved control strategy adeptly handles frequency and voltage changes within the islanded composite system, contributing to 

overall power quality improvement
[101] The employed BESS dispatch method effectively stabilized PV capacity, showcasing enhanced smoothing properties in the inte-

grated PV feeder
[159] A comparison was conducted between the LP model and the renewable energy simulation program SAM. The investigation’s results 

revealed a normalized root mean square error of 2.10 percent for yearly battery dispatch
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renewable energy for release during high-demand periods, as 
evidenced in Ref. [98]. Tracking desired dispatch is another 
BESS role achievable with substantial deployment. Fore-
casts often dictate the intended dispatch, prompting BESS 
intervention to rectify forecast errors [99], minimize actual 
vs. planned wind power differences [81], or adhere to power 
targets [71]. Furthermore, a substantial body of research 
focuses on the application of BESS to mitigate the inherent 
fluctuations in renewable generation systems arising from 
variability in resources.

In these studies, a comparative analysis is conducted, 
juxtaposing the processes and outcomes associated with 
different methods of electricity generation. Specifically, the 
research explores the facets of photovoltaic electricity gen-
eration, as outlined in references [100] and [101], delving 
into the intricate details and operational characteristics of 
PV systems.

Moreover, the investigation extends its scope to encom-
pass solar photovoltaic farms, a distinct approach to har-
nessing solar energy. Reference [75] serves as a valuable 
source of information in this regard, shedding light on the 
operational intricacies and potential benefits of solar photo-
voltaic farms in electricity production. In a parallel explora-
tion, the research also examines the domain of wind farms, 
as elucidated by references [102] and [103]. This segment 
of the study endeavors to unveil the nuanced aspects of wind 
energy generation, scrutinizing the operational dynamics and 
efficiency considerations unique to wind farm installations.

Apart from the technical goals that involve extended 
viewpoints within the tertiary control layers, a few crucial 
technical metrics will be encompassed by the secondary con-
trol, such as voltage and frequency regulation. In traditional 
power systems, frequency control involves dispatching spin-
ning reserves or other thermal generators within the network. 
Voltage regulation, on the other hand, can employ various 
reactive power compensation methods like SVC. Battery 
technology advancements have reached a point where they 
can handle both active and reactive power, allowing them to 
contribute for the purpose of regulating frequency and volt-
age [55, 66], facilitated by sophisticated power electronic 
techniques.

Significantly, BESS have been incorporated for technical 
functions within the domain of primary control, encompass-
ing very brief timeframes or operations in a quasi-real-time 
manner. Nonetheless, these elements will not be tackled in 
this examination. A more comprehensive investigation into 
microgrid battery control, offering greater understanding of 
real-time battery management, can be found in [34]. These 
applications can be categorized as “additional performance 
enhancements.” For instance, some objectives involve 
decreasing battery capacity loss [77] and augmenting the 
firming of PV capacity [101]. “Capacity firming” involves 
the utilization of storage systems in conjunction with other 

methods to ensure a consistent amount of renewable energy 
over a specified period. A more comprehensive list of works 
delving into managing battery energy to achieve technical 
goals, the details are present within Table 4.

4.3 � Hybrid Objectives

While the technical and economic aims of BMS discussed 
earlier constitute a significant portion of the research in this 
domain, a growing body of research are now focusing on 
not only a single battery type but also leveraging batteries to 
achieve both technical and economic objectives. This con-
cept is termed “hybrid objectives.” This trend is anticipated 
to persist, as it aligns logically with the often-intertwined 
nature of technical and financial objectives. This is espe-
cially evident when technical advancements translate into 
measurable financial gains. Addressing hybrid objectives 
often requires the application of multi-objective optimiza-
tion methods, accommodating the simultaneous pursuit of 
multiple objectives. The process of amalgamating multiple 
objectives into a single optimization challenge through the 
utilization of weighted values is a fundamental approach 
applicable to hybrid objectives. This technique is referred 
to as “scalarization” [110]. When these weight distributions 
align with the costs associated with each objective, the sum-
mation of individual expenses across all unique aims will 
correspond to the total expenditure. Consequently, certain 
hybrid goals can be categorized within the financial objec-
tive cluster. Two instances of this can be observed in Refer-
ence [86], where objectives concerning energy price and 
battery degradation cost are discussed.

A glance at Table 5 reveals several research studies that 
encompass both technological and financial aims, consoli-
dated through costs and gains. This is due to the recognition 
of these supplementary technical facets as routinely adopted 
metrics essential for assessing profitability. In fact, through 
financial integration methodologies, numerous investigations 
featuring a broad spectrum of cost/profit components, span-
ning both financial and technical intentions, may be classi-
fied as harboring hybrid objectives. An example involves the 
total of costs related to multiple factors, including expenses 
from load shedding, costs and profits from electricity pur-
chase/sale, battery degradation expenses, penalties from 
transformer overheating, and costs or profits from providing 
primary frequency control, as depicted in Reference [160]. 
Certain of these elements might not typically arise within 
economic assessments, and this is evident.

When dealing with dimensionless weights, the process 
of aggregating different objectives becomes crucial. For 
instance, Duong and Khambadkone [170] illustrates a sce-
nario where a particular combination of weight factors is 
employed to integrate power loss, power variation, and bat-
tery life reduction. Furthermore, the application of fuzzy 
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logic controllers proves advantageous for integrating diverse 
goals. This approach was employed by [171] to establish 
an optimal SOC range for BESS, ensuring their ability to 
mitigate fluctuations in wind power while preventing over-
charging or over discharging. Similarly, Saxena et al. [172] 
harnessed fuzzy logic to minimize sustainable energy loss, 
feeder loss, voltage deviation, and overall power costs.

A different strategy to attain hybrid goals involves fram-
ing the issue as a multi-objective optimization. In contrast 
to a single-objective problem where a global optimum must 
be found, a multi-objective issue offers multiple Pareto 
optimal solutions. This allows the battery to enhance one 
performance criterion without negatively affecting others. 
Employing intelligent optimization techniques like GA, 
PSO, and NSGA-II is common to implement Pareto multi-
objective solutions. An example would be using NSGA-II 
to find Pareto fronts that simultaneously reduce electricity 
production costs and maximize the lifespan of lead-acid 
batteries [173]. Another instance involves using a parallel 
algorithm to balance economic gains from energy arbitrage 
and battery lifespan, showcasing a similar application of 
the Pareto optimum operation [174]. It’s worth noting that 
in some research, such as [70, 175], artificial intelligence 
methods were directly employed without utilizing Pareto 
multi-objective optimization techniques. An approach to 
consolidate hybrid goals is multi-stage optimization, where 
each step focuses on achieving a specific goal. In a dual-
tier optimization structure presented in Reference [176], the 
BESS was programmed in the upper tier to curtail opera-
tional expenses, while in the lower tier, it aimed to mitigate 
predictive uncertainties and power variations by minimizing 
power perturbations.

Furthermore, methods like rule-based management can 
also be employed to address battery operations and hybrid 
system goals. Hybrid optimization objectives are prioritized 
and addressed accordingly. In Ref. [177], the BESS energy 
management strategy initially targeted stopping reverse 
power flow, followed by normalizing residual distribution 
network consumption and optimizing battery operation. 
“Residual distribution network demand” pertains to the vari-
ance between the energy needed and the renewable energy 
accessible within the grid system.

5 � BESS Optimization Techniques

After establishing the dispatch objectives for the BESS, the 
subsequent pivotal step involves determining how to regu-
late the battery to fulfill these objectives or how to tackle 
the optimization challenge, given that the objectives and 
constraints are clearly defined. The technical solutions to 
BESS optimization are encapsulated within methods known 
as BESS optimization techniques. The initial step is to select 

an approach that proves effective in resolving the issue, con-
sidering certain methods might not be suitable for specific 
problem types due to their inherent limitations. This aspect 
will be further elaborated in the upcoming section.

The decision variables in optimization problems gener-
ally encompass either the power value of the battery at each 
time interval or the power patterns exhibited by the battery 
over a specific duration. Solving the optimization problem 
is essential to determine the power pattern for charging 
and discharging the battery storage. This process involves 
exploring potential solutions to pinpoint the best possible 
values for the decision variables, with the goal of attaining 
optimal outcomes for the specified objective.

A plethora of strategies have been employed in the pur-
suit of resolving the optimization challenge, spanning from 
simple rule-based systems to complex multi-stage optimiza-
tions. This section provides a summary of the approaches 
employed to tackle optimization challenges in managing 
BESS. These approaches can be categorized into methods 
centered on DSB, probabilistic approaches, and control strat-
egies. A summarized visual representation in the shape of 
a schematic diagram outlines the discussed approaches and 
their classification in Fig. 4.

5.1 � Direct Search Based (DSB) Methods

This section provides a summary of three distinct varieties 
of DSB approaches. These encompass the employment of 
analytical solvers, the utilization of dynamic programming, 
and the application of heuristic techniques. The working 
process of DSB method is illustrated in Fig. 5.

5.1.1 � Mathematical Solvers

When dealing with optimization challenges that can be for-
mally described as linear or NLP, both mixed-integer and 
not, traditional optimization techniques or mathematical 
solutions can be efficiently employed. When the constraints 
or objective functions exhibit non-linearity, a nonlinear pro-
gramming issue arises. On the other hand, a mixed-integer 
problem arises when only a subset of the optimization prob-
lem involves integer decision variables, and a nonlinear pro-
gramming problem is characterized by having both nonlinear 
constraints and objective functions. The Lagrange multiplier 
[156] is an established approach often utilized to find solu-
tions to convex optimization problems.

The GAMS stands out as the most frequently employed 
platform for solving optimization problems, equipped with 
a range of integrated solvers. Historically, GAMS has effec-
tively addressed MILP problems [89, 162], NLP [54] as well 
as nonlinear programming through linearization [87].

Furthermore, IBM ILOG CPLEX Optimization Studio 
(CPLEX) stands out as a widely employed software tool 
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for managing optimization challenges. CPLEX is adapt-
able to various platforms, including MATLAB and Python, 
rendering it extensively utilized. This solver is also inte-
grated into the previously mentioned GAMS system, as 
seen in solving the optimization problem discussed in Ref-
erence [87] by combining GAMS and the CPLEX solver. 
The flexibility of the CPLEX solver enables it to tackle an 
array of optimization tasks, encompassing but not confined 
to IP, LP, and QP challenges. Instances of its application 
incorporate addressing a linear convex issue [110] and a 
MILP challenge [130] within the MATLAB environment.

Apart from the previously discussed CPLEX solver, 
alternative packages with varying solutions can be inte-
grated into MATLAB. For instance, to address a two-stage 
problem’s upper and lower layers, the interior point opti-
mizer IPOPT [178] was utilized for NLP, while the solver 

Gurobi [179] handled QP. Both these tools were employed 
to address the issue at hand.

In some scenarios, the optimization problem may not be 
amenable to standard formulation, particularly when consid-
ering additional constraints related to battery energy man-
agement, such as battery degradation or operational logic. 
These constraints involve the battery’s degradation process 
and other operational rules. Consequently, the designated 
problem solvers may not be suited for this specific applica-
tion. The introduction of more variables to a problem not 
only amplifies the model’s complexity but also increases 
its dimensions to accommodate supplementary informa-
tion. This, in turn, leads to escalated memory requirements 
and challenges when employing mathematically oriented 
methods. For example, specific solvers, such as the open 
version of CPLEX, come with predefined constraints on 

Fig. 4   Charge management 
approaches of BESS
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the quantity of decision variables. As a result, numerous 
researchers seeking viable approaches for resolving battery 
energy management-related optimization issues are explor-
ing diverse search-based methodologies.

5.1.2 � Dynamic Programming

In accordance with the principles of dynamic programming 
(DP) emphasized by Bellman [180], the decision-making 
process from an initial to a final position can be subdivided 
into multiple stages. The decisions at each stage can be 
framed based on the available data regarding the current 
system conditions. Additionally, complex problems can be 
deconstructed into a sequence of more manageable subprob-
lems, allowing for iterative resolution of the original issue. 
The SOC of a battery serves as an indicator of how its pre-
vious condition influences its present state. Consequently, 
SOC can serve as a state variable, following the formal defi-
nition provided in Ref. [181].

Furthermore, SOC of the battery can be determined 
by employing determining factors such as the battery’s 
power profile. Numerous studies have demonstrated the 

effectiveness of DP in addressing battery energy manage-
ment challenges. For instance, a study comparing DP to a 
rule-based management strategy revealed DP algorithms 
achieving approximately a 13% improvement in platform 
gains [118]. Additionally, Ref. [85] employs a two-scale 
DP approach encompassing macro-scale and micro-scale 
DP techniques. This method leverages multi-scale forecasts 
of wind power output, utility pricing, and loads to optimize 
battery storage management. This integration significantly 
enhances system cost-effectiveness through enhanced 
precision.

5.1.3 � Heuristic Methods

Heuristic techniques, including GA, PSO, NSGA-II, and 
others, are gaining prominence as effective strategies based 
on directed search. Synonyms such as artificial intelligence 
techniques or methods inspired by nature could also be pre-
sent in scholarly works. Heuristic methods involve practical 
strategies, similar to the process of trial and error, searching 
for acceptable solutions. These approaches can be applied 
to various optimization problems, even if the problem’s 

Fig. 5   Working process of direct search-based approaches
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description isn’t precise. While heuristic methods don’t 
assure finding the global optimum, they exhibit notable flex-
ibility and robustness.

GAs operates as a search heuristic, likening the fitness 
function to the natural selection process, favoring the fittest 
individuals (survivors for reproduction) across generations 
[182]. Similarly, PSO emerged from observations of col-
lective animal behavior, like bird flocks and fish schools. In 
this analogy, individual solutions within a population act as 
particles evolving toward optimal solutions [183]. NSGA-
II, rooted in GAs, is a popular choice for multi-objective 
optimization tasks.

The application of heuristic techniques to attain the best 
possible energy management for BESS is increasingly preva-
lent and is anticipated to continue. For instance, an innova-
tive self-adjusting optimization approach employing PSO 
was developed with the aim of reducing overall operational 
costs of the grid [84]. Furthermore, a distributed network 
with integrated renewable energy was optimized through a 
multi-objective approach that combined fuzzification and 
PSO [172], both showcasing PSO’s utility in battery optimi-
zation. GA is also employed for tasks like scheduling BESS 
to reduce line loss [97] and reducing daily net expenses in 
advance-market scenarios [111].

NSGA-II, proves to be a valuable tool for addressing 
multi-objective optimization challenges. It classifies popu-
lations based on Pareto ranking derived from fitness evalu-
ations, thus sorting them into different non-dominated tiers. 
The application of NSGA-II extends to optimizing battery 
performance across diverse objectives, as evidenced by 
References [173, 175], which are also explored in Sect. 4.3. 
Furthermore, there exists a substantial array of newly devel-
oped heuristic approaches employed for optimizing BESS. 
An innovative HH algorithm, showcased in Reference [96], 
stands out for its application in seeking the optimal schedul-
ing strategy for BESS.

Hyper-heuristic methodologies encompass search tech-
niques and learning procedures aimed at selecting or gener-
ating heuristics tailored to specific optimization problems. 
This delineation is provided in the same reference [96], 
where hyper-heuristic algorithms were harnessed to discover 
the most suitable scheduling approach for BESS. Another 
distinct heuristic method, known as SFL optimization, was 
synergistically combined with PSO in Reference [184]. The 
intention of this combination was to achieve a worldwide 
enhancement of the membership function within a fuzzy 
logic controller. In contrast to GA, which focus solely on 
parent–child interactions, this approach accommodates the 
propagation of memes through interactive individuals, fos-
tering enhanced information dissemination flexibility.

To ascertain the optimal performance of BESS, with the 
dual goals of maximizing revenues and upholding smart 
grid reliability, researchers in Reference [185] employed 

a methodology closely resembling it, labeled as the crow 
search technique. Moreover, a formulated model for a 
restricted stochastic shortest path was created, subsequently 
tackled via a recommended parallel technique featuring an 
iterative simultaneous search for the optimal Lagrange mul-
tiplier, as detailed in Reference [174]. Regarding battery 
energy management optimization, the methods centered on 
directed search, previously discussed, prove notably effec-
tive in seeking solutions. In contrast to probability-based 
and stochastic techniques, directed search-based (DSB) 
approaches lack assurance in securing the global optimal 
solution due to unpredictable variables like solar and wind 
resources, demand, and electricity price. Therefore, the sub-
sequent section will demonstrate the advantages of probabil-
istic methods, considering the distribution of random vari-
ables across an extensive range of potential outcomes. These 
outcomes encompass extreme scenarios, which deterministic 
optimization methods may or may not encompass.

5.2 � Probabilistic Methods

There are three distinct probabilistic methods utilized in 
battery energy management: robust optimization, stochastic 
optimization, and SDP. The working process of probabilistic 
method is illustrated in Fig. 6.

5.2.1 � Robust Optimization

In robust optimization, ambiguity is introduced into the 
deterministic optimization process by aiming for the worst-
case scenario. The foundation of robust optimization lies 
in analytical optimization, which extends the analytical 
method to optimization. Both stochastic optimization and 
this method have been widely employed in recent years 
to address unit commitment challenges [186, 187]. One 
straightforward and effective approach for robust optimiza-
tion is formulating the issue in a problem with two stages 
focused on maximizing and minimizing. Here, the first step 
involves planning the battery storage system, as illustrated 
in [91], to minimize potential profits within the search space 
by introducing a few random variables to identify the worst 
possible outcome and determine the optimal solution. In the 
subsequent step, robust optimization is finalized by maxi-
mizing potential earnings under the worst-case scenario, 
maximizing the total number of potential profits. A similar 
instance of utilizing min–max-min robust optimization is 
exemplified in Reference [131], wherein wind turbine and 
PV power generation are treated as random variables, mir-
roring the case presented in Reference [131]. An alterna-
tive approach to address battery management optimization 
issues involves transforming a dual-stage maximum-mini-
mum problem into an analogous single-level optimization 
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applying the Karush–Kuhn–Tucker optimality conditions, 
outlined in the reference [92].

5.2.2 � Stochastic Optimization

Batteries are commonly optimized using a probabilistic tech-
nique called stochastic optimization. Stochastic optimization 
involves optimizing a mathematical or statistical function 
under conditions of input parameter uncertainty, aiming to 
either maximize or minimize its outcome. For instance, sto-
chastic optimization can be applied to maximize profits in 
a virtual power plant scenario, considering the uncertain 
electricity generation from PV and wind sources as well as 
market electricity prices [95]. Another use is capitalizing on 
the unpredictability of wind power to optimize revenue from 
the sale of electricity in the marketplace [108].

5.2.3 � Stochastic DP

Stochastic DP, a probabilistic approach, finds applica-
tion in battery energy management. It closely resembles 
stochastic optimization, discussed in detail in Sect. 5.1.2. 

SDP can be envisioned as an extension of DP infused with 
random variables. An illustrative example of this approach 
is outlined in Ref. [86], where an energy storage system’s 
operation over a horizon considers battery degradation, 
variable generation, demand, and electricity costs. Unlike 
deterministic scenarios aimed at minimizing total costs 
across the project, here, projected costs are minimized at 
each step.

SDP further incorporates a Markov chain process, dem-
onstrated in References [170, 188]. An outer Markov chain 
generates uncertain hourly renewable power generation and 
consumption profiles, while an inner Markov chain produces 
unpredictable daily average renewable energy output and 
demand usage. Both chains employ the Markov model. Here, 
forecasted or assumed values are substituted with randomly 
generated variable values, distinguishing it from dynamic 
programming. Addressing energy storage scheduling under 
photovoltaic unpredictability, a solution combines DP and 
SDP. This involves treating the clarity index, a ratio of global 
irradiation to additional irradiation on a horizontal plane, 
as a random variable during daylight hours, transforming 
it into an SDP challenge. Conversely, during the night, this 

Fig. 6   Working process of probabilistic approaches
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value is preset as 0, transforming the problem into a DP 
scenario [161].

5.3 � Control Strategies for Battery Energy 
Management

In the upcoming section, we will explore research that cat-
egorizes control approaches for battery energy management 
into rule-based methods and optimal control strategies. 
These techniques will be elaborated upon in the follow-
ing passages. In the domain of BESS applications, control 
methods play a significant role in enhancing the dynamic 
and transient behavior of the system, often operating within 
time scales ranging from milliseconds to seconds. In spe-
cific instances, control theory has also been employed for 
BESS implementation over longer time spans, spanning 
from minutes to hours. Such cases frequently rely on optimal 
control strategies, including MPC [90, 109], although excep-
tions exist. Rule-based approaches are typically explained 

through logical steps rather than equations, offering clar-
ity. Conversely, when pursuing a solution through optimal 
control, the problem is expressed as a set of concise matrix 
equations. The working process of control strategies is illus-
trated in Fig. 7.

5.3.1 � Rule‑Based Strategies

Apart from the strategies involving explicit issue statements, 
alternative studies utilize precise flowcharts, executive rules, 
or processes to determine charging and discharging methods 
for the BESS. These approaches exist alongside the methods 
mentioned earlier and fall under the “rule-based” category. 
A straightforward illustration of rule-based approaches is 
using the battery to compensate for discrepancies in PV fore-
casts [99]. This involves a rule where the battery charges 
when the PV power output prediction is lower than actual 
and discharges when it’s higher.

Fig. 7   Working process of control approaches
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Rule-based methodologies can also incorporate prior-
itized criteria. For instance, in Reference [177], the authors 
establish three priorities: first, maximizing distributed 
renewable energy usage; second, efficient battery utilization; 
and third, demand management. Consequently, the battery 
system fulfills these priorities in the specified order. When 
photovoltaic panel generation exceeds load demand, a choice 
arises between charging the battery or sending excess energy 
to the grid, as exemplified in Reference [93]. This represents 
a rule-based system. Conversely, when there’s an energy def-
icit and PV panels can’t meet demand, a decision is needed 
on whether to source the deficit from the grid or the bat-
tery. Rule-based methodologies highlight the necessity of 
logical decisions for understanding battery operation. Typi-
cally, these decisions are depicted as flow diagrams or pseu-
docodes. For instance, in battery management, Zhang et al. 
[73] established two autonomous battery systems to enable 
independent charging and discharging processes. Similarly, 
in power grid regulation, rule-based approaches determine 
whether the battery should charge or discharge based on 
the deviation of frequency from the standard [66]. Decision 
criteria are also used for BESS control, with load dissatisfac-
tion triggering action. The BESS charge or discharge power 
depends on the generation-to-requirement imbalance [126]. 
Rule-based strategies can also facilitate peak shaving. An 
illustration is found in Ref. [98], where a significant parame-
ter, the demand constraint, serves as the peak shaving objec-
tive. This definition arises from profit-maximizing analytical 
optimization. When real demand exceeds the limit, the ESS 
discharges; conversely, it charges when demand is below the 
limit. Filters are essential for implementing method-based 
rules. Filters allow only specific frequency content, guiding 
unique procedures for each frequency set. For example, to 
segregate low and high-frequency components in primary 
tie-line power quality issues, two Butterworth filters were 
used. The BESS managed the low-frequency component, 
while electric heat pumps, considered as variable loads, 
addressed the high-frequency component [145].

5.3.2 � Optimal Control Strategies

Compared to the primary control strategies that operate 
within milliseconds to seconds, the majority of optimal con-
trol approaches in battery dispatch are focused on medium 
to long-term regulation of BESS. These strategies operate 
on timescales ranging from several minutes to hours. Based 
on the structure of BESS, these control measures are catego-
rized as secondary or tertiary levels, as detailed in Sect. 2. 
This segment of the study examines the most effective meth-
ods for managing battery energy. This emphasis is due to the 
research’s primary focus on the utilization of battery energy 
management.

Considerable research is directed towards using BESS 
as an optimal control strategy to address the challenge 
of managing the unpredictability of renewable energy 
production. One widely adopted technique is SOC feed-
back control, which dispatches BESS to monitor desig-
nated power generation and ensure that the BESS’s SOC 
remains within an acceptable operational range [147, 
149]. MPC is a widely employed optimization approach 
for battery energy management. MPC divides the prob-
lem into discrete timeframes, considering both present 
and future timeframes. This facilitates optimization for 
the current timeframe while maintaining adaptability for 
shifting focus to different perspectives. An instance of 
MPC’s practical application in battery optimal control 
can be found in Reference [109], where a novel decentral-
ized financial MPC was used in a housing microgrid to 
optimize user benefits while accounting for energy losses. 
This represents a direct implementation of MPC in battery 
management. This showcases the versatility of the MPC 
framework. In the study by Miranda et al. [90], an MPC 
framework is adopted for rapid dispatching within a 4-h 
timeframe. Furthermore, Reference [88] introduces a Lya-
punov optimization technique to simultaneously optimize 
load planning, energy flows, and storage control using a 
well-designed Lyapunov function. It’s worth noting that 
coordinated control becomes essential when multiple 
BESS are integrated into renewable energy systems. One 
such coordinated control strategy is exemplified in Ref-
erence [55], where batteries are categorized as a master 
battery and multiple slave batteries. The master battery, 
typically the smallest among the BESS, takes precedence 
during interruptions. Should the master BESS’s state of 
charge fall short, the remaining slave batteries are utilized 
as alternatives. This coordinated control strategy ensures 
efficient interaction among multiple BESS units.

Overall, the application of MPC and coordinated con-
trol mechanisms significantly enhances the management 
and optimization of battery energy systems.

6 � Discussion

This section explores the relationships between optimiza-
tion objectives and methodologies in battery energy man-
agement research. It discusses how optimization goals 
align with specific methodologies and highlights the trends 
in battery energy management objectives and methodolo-
gies. These discussions are drawn from research summa-
ries that address battery energy management optimization 
targets and approaches.
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6.1 � Exploring the Interplay Between Optimization 
Objectives and Technique

The above summary clarifies that the selection of an opti-
mization algorithm is closely linked not only to the objec-
tives pursued by a BESS but also to how the optimization 
problem is formulated. The objectives can be effectively 
framed as optimization problems with constraints, incor-
porating control parameters within both the optimization 
problem and constraints. This applies to objectives that can 
be combined, such as costs, profits, energy consumption, or 
intangible “costs.” Instances of such objectives encompass 
pricing and profits.

This category primarily covers financial objectives, cer-
tain technical objectives related to energy optimization, and 
hybrid objectives. For these scenarios, effective solutions 
can be attained through DSB methods, including mathemati-
cal solvers, dynamic programming, or heuristic approaches. 
For example, it's clear that a standard optimization form can 
be used to easily write down financial goals that involve a 
number of costs and gains that need to be taken into account. 
This highlights a discernible trend in research, as illustrated 
in Table 3, were frequently addressed using directed search 
methods for problem-solving. Additionally, for the utiliza-
tion of mathematical solvers, the problem must initially be 
formulated in a precise standard optimization format, often 
requiring further mathematical analysis. Optimal solution 
discovery is most time-efficient with mathematical solvers. 
Conversely, heuristic methods necessitate minimal math-
ematical formulation, but they may sacrifice computation 

accuracy due to the potential of becoming trapped in local 
optima. Additionally, DP tends to be employed in scenarios 
where achieving a high level of computational accuracy is 
desired. Conversely, heuristic approaches are more suitable 
when the implementation is expected to be straightforward. 
The summary of various DSB techniques is depicted in 
Fig. 8, considering factors such as mathematical complex-
ity, implementation feasibility, computational accuracy, and 
computational resource requirements.

This phenomenon indeed elucidates the utilization of 
heuristic methods across a wide array of objectives, regard-
less of the problem's clarity. Heuristic techniques have been 
applied to a diverse range of goals. In the context of techni-
cal objectives, DSB methodologies are commonly chosen as 
the optimization approach. This holds especially true when 
objectives can be defined within a conventional optimization 
framework, which includes a cost-based objective function 
and constraints articulated through decision variables [96, 
97].

The prior-discussed research revolves around “energy 
optimization problem-solving,” evident from the presenta-
tion of data in Table 4. Moreover, addressing these chal-
lenges often necessitates the implementation of control tech-
niques in solution methods for managing battery usage to 
meet specific requirements [98, 99, 145], these issues often 
necessitate control techniques for solution methods. Rule-
based methodologies and optimal control are frequently 
employed in these scenarios. The distinction between these 
two control approaches can also be attributed to how the 
problem is formulated. Optimal control often demands a 

Fig. 8   Characteristics of tech-
niques based on directed search
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well-defined reference or the precise definition of a cost 
function. Conversely, rule-based solutions frequently involve 
flowcharts or “pseudo-codes” for problem-solving.

Another critical observation is the dependence of proba-
bilistic methods on the consideration of random variable 
unpredictability. Specifically, this relates to whether incor-
porating uncertain factors like random photovoltaic and 
wind power generation, power consumption, and electricity 
prices into the formulation is beneficial.

When dealing with complex problems that account for 
the randomness and unpredictability of variables, leverag-
ing stochastic and resilient optimization techniques becomes 
necessary. Conversely, deterministic optimization methods, 
which are grounded in directed search and control strategies, 
become prominent when the degree of randomness is lower. 
Utilizing predicted values for random variables, instead of 
extensive simulation studies, enhances the likelihood of 
obtaining optimal solutions. In a specific instance [85]), 
wind forecasts, electricity costs, and demand projections 
were employed to preemptively address optimization con-
cerns, obviating the need for a probabilistic approach. From 
an alternative perspective, probabilistic techniques could 
be seen as DSB methods that encompass random variables. 
This arises because each deterministic scenario represents 
an optimization problem solvable through directed search 
approaches. As a result, compared to guided search-based 
methods, probabilistic approaches may present greater com-
plexity in their application.

When incorporating random variables, various scenarios 
emerge, each of which can be regarded as a deterministic 
optimization problem solvable through the application of 
mathematical solvers in the context of stochastic and robust 
optimization. This streamlined approach significantly 
enhances the efficiency of resolving optimization challenges.

In the depicted diagram, it's evident that a majority of 
the financial objectives, along with certain technical and 
hybrid goals, primarily pertain to addressing issues through 
tertiary control. Here, different strategies might be suitable 
for resolving these challenges. Conversely, secondary con-
trol takes responsibility for managing other technical and 
hybrid objectives. Control techniques are typically employed 
to tackle such scenarios.

6.2 � Exploring the Evolving Landscape of Battery 
Energy Management Goals

Upon reviewing the BESS dispatch objectives, it becomes 
evident that the administrator's intentions hold considerable 
sway over the established goals. If the BESS is managed by 
a non-profit power grid or corporate entity, its utilization 
is likely geared towards addressing system issues, such as 
maintaining system stability. Conversely, if the BESS falls 
under the control of a private investor, the battery's usage 

is more likely to be optimized for maximizing economic 
opportunities. In this scenario, the emphasis would be on 
enhancing technical quality.

In reality, both technological and financial objectives 
hold global significance, with prioritization stemming from 
the investment strategy. As a result, a prominent trend in 
battery energy management goals is the adoption of multi-
objective optimization for BEM. This approach involves 
pursuing various and sometimes conflicting objectives for 
battery optimization, moving beyond single objectives or 
facility-centric approaches for the BESS. Consequently, this 
represents a significant trajectory in battery energy manage-
ment objectives.

Besides multi-objective optimization, it's feasible that 
when defining one optimization goal, another objective can 
be achieved simultaneously without extra effort during the 
primary optimization process. This concept is referred to as 
simultaneous optimization. A prime example of this con-
cept is demonstrated in the research study [118]. The study's 
main goal is to minimize total working capital, encompass-
ing electricity costs and income from feed-in tariffs. The 
findings reveal the successful achievement of peak shaving 
while concurrently reducing power fluctuations within the 
grid. This case study serves as a robust illustration of simul-
taneous optimization, indicating a more rapid and effective 
deployment of BESS.

Another strategy involves mitigating the disparities 
between active power from the transformer and the standard 
power curve. Simultaneously, numerous supplementary per-
formance objectives were effectively realized [142]. Though, 
it's essential to approach this cautiously, as conflicting opti-
mization objectives could lead to reduced utility. This pos-
sibility necessitates careful consideration.

Emerging is the trend of establishing virtual power sta-
tions through peer-to-peer trading systems [115]. This 
research highlights the vital role of coordinated planning 
among a group of BESS to substantially reduce power gen-
eration costs for both producers and consumers. Household 
PV power and the dispatchability of household batteries hold 
significant potential for efficient energy market utilization. 
This setup benefits both consumers and companies by reduc-
ing monthly bills while enhancing grid capabilities simulta-
neously [189, 190].

6.3 � Exploring Emerging Trends in Battery Energy 
Management Strategies

The comprehensive overview discussed in Sect. 5; a tubu-
lar comparison is presented in Table 6. From Table 6, it 
becomes evident that each chosen optimization approach 
comes with its own merits and drawbacks. No single strat-
egy reigns supreme in addressing all BESS management 
optimization challenges. Therefore, this study not only 
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examines the advantages and limitations of each optimi-
zation strategy but also equips readers with insights into 
alternative viable strategies that can be employed based 
on specific needs.

Considering the discourse on the benefits and draw-
backs of individual optimization techniques, a notewor-
thy advancement on the horizon is the integration or 
hybridization of methods. This fusion seeks to harness the 
strengths of different approaches and thereby surpass the 
efficacy of the original strategies. This exciting develop-
ment marks a promising step in optimization techniques. 
The findings of this analysis reveal a considerable number 
of past research endeavors adopting multiple strategies for 
battery optimization. To illustrate the implementation of 
hybrid approaches, a logical breakdown of the issue into 
its constituent components or phases is recommended. 
Accordingly, suitable strategies can be allocated to specific 
stages based on the unique problem and the advantages 
they offer.

An instance of this hybrid methodology is demonstrated 
in a two-stage optimization framework discussed in Ref. 
[191]. Here, the active and reactive optimal power flow, 
treated as a MINLP problem, was divided into two stages. 
The upper stage was implemented in MATLAB using 
GA to tackle integer variables, while the lower stage was 
addressed as a NLP problem using GAMS. The framework 
was developed utilizing the GDXMRW platform, serving 
as an interface between GAMS and MATLAB. A similar 
approach employing a two-step strategic plan can be found 
in Reference [171]. The initial step of this approach aimed 
to identify the optimal SOC range, reducing excessive 
BESS overcharging and over discharging. The subsequent 
step aimed to stabilize wind speed fluctuations and manage 
SOC within the most favorable range. A two-step problem-
solving strategy was employed: a fuzzy self-adjusting filter 
was applied to the first step, employing a low-pass filter to 
smoothen wind fluctuations and a fuzzy-logic filter to con-
trol the BESS's SOC in the optimized range. For the sec-
ond step, fuzzy PSO was employed. Notably, PSO was also 
utilized to address the initial step of the two-step problem.

Additionally, battery energy management systems can 
benefit from various application-specific strategies to alle-
viate stress. Supplementary techniques like supercapaci-
tors, demand response programs, and controllable loads 
such as electric vehicles and flexible equipment can play 
a role in energy conservation alongside the BESS, depend-
ing on the renewable power system's configuration [145]. 
Similarly, Reference [192] demonstrates the integration 
of a hydrogen storage system with the BESS, enabling 
an independent PV system's operation. Reference [193, 
194] presented the techno-economic benefits of renewable 
energy in the presence of BESS.

6.4 � Other Future Trends

An expanding body of research is focused on enhancing bat-
tery storage efficiency and its administration, in line with the 
previously mentioned battery energy management goals and 
approaches. Prospective studies stand to gain from advance-
ments in battery management, driven by more precise mod-
eling of battery characteristics and novel strides in battery 
technology. These endeavors aim to implement comparable 
techniques, minimize degradation, and prolong battery life. 
In the modern context of power grid management, the inte-
gration of AI and ML algorithms has become increasingly 
prevalent [195, 196]. These technologies are being harnessed 
in a multitude of significant ways. One such crucial appli-
cation lies in the realm of comprehensive sensing, which 
entails the observance of electric equipment, forecasting 
renewable energy production, predicting energy demands, 
projecting electricity costs, and a host of other related tasks. 
This capability revolutionizes the grid's ability to respond 
dynamically to real-time conditions and fluctuations.

Moreover, AI and ML are playing a pivotal role in 
enhancing decision-making processes within the power grid 
landscape. This encompasses a wide array of functions, from 
strategic power system planning to rapid fault detection, and 
even extends to the optimization of demand-side manage-
ment strategies. These technologies empower grid operators 
with unprecedented insights and tools to ensure the robust-
ness and reliability of the power network. Furthermore, the 
influence of AI and ML is extending to the domain of battery 
operations and market-driven power pricing mechanisms. 
By leveraging advanced algorithms, energy storage systems 
can be optimized for efficiency, charging schedules, and dis-
charge patterns. Additionally, these technologies are instru-
mental in the development of market models that respond 
intelligently to supply and demand dynamics, ultimately 
leading to more efficient and economically viable energy 
transactions. In sum, AI and ML technologies are reshaping 
the contemporary power grid landscape by enabling com-
prehensive sensing capabilities, enhancing decision-making 
processes, and influencing critical aspects such as battery 
operations and market-based pricing strategies. This integra-
tion marks a transformative shift towards a more adaptive, 
responsive, and efficient energy ecosystem.

Reinforcement learning techniques are also emerging 
for enhancing optimization models [197]. Furthermore, 
aggregated solar batteries are being employed as VPPs 
due to these battery activities. The energy stored in these 
batteries can power a sizable array of solar panels, offering 
controllable energy generation capabilities. Furthermore, 
the exchange of energy between home batteries and EVs 
through blockchain technology is capturing growing atten-
tion within the distribution system. It's possible that in the 
near future, power markets will become more dynamic, 
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fostering increased interaction among individual consum-
ers. This shift would necessitate the development of fresh 
strategies for utilizing battery power and innovative per-
spectives on its usage.

7 � Conclusion

This study focuses on various techniques and approaches 
to integrate BESS with renewable energy sources. The 
implications of battery energy management are outlined, 
including modeling methodologies, chosen scheduling 
objectives, and implemented optimization strategies. Many 
of the examined studies used simplified charge and dis-
charge mechanisms in their baseline battery models. A 
recurring observation is that BESS objectives are mainly 
grouped into three categories: economic, technological, 
and hybrid goals. Private individuals often pursue finan-
cial objectives to maximize profits, while system operators 
adopt technical objectives to improve system performance. 
Additionally, optimization strategies are divided into three 
main categories for this review.

In contrast, this evaluation provides a comprehensive 
overview of battery management methods, examining their 
research by correlating chosen optimization objectives with 
relevant algorithms. The efficacy of DSB approaches and 
control strategies for technical goals is found to outweigh 
their effectiveness in addressing financial objectives. The 
extent to which a problem can be mathematically defined 
significantly influences the applicable resolution strategies.

Moreover, algorithms inspired by natural phenomena and 
boasting high adaptability exhibit versatility across vari-
ous scenarios, irrespective of whether the aims are finan-
cial, technological, or a fusion of both. In cases involving 
unknown variables, probabilistic approaches offer more 
comprehensive solutions by accounting for an array of 
possibilities. Comparative analysis of reported optimiza-
tion techniques reveals the growing significance of hybrid 
approaches that amalgamate the strengths of multiple opti-
mization methods.

Anticipated is the heightened stringency in evaluating the 
efficiency of BESS, as the trend toward increased integra-
tion of renewable energies continues. With the expanding 
spectrum of battery storage applications, it's evident that 
advanced optimization methods will be essential in achiev-
ing diverse objectives through battery storage.
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