Total Marks: 100

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 0109 Roll No.

## B. Tech.

## (SEM. III) ODD SEMESTER THEORY EXAMINATION 2010-11

## **DIGITAL LOGIC DESIGN**

Time: 3 Hours

(2) All questions carry equal marks.

(1) Attempt all the questions.

- 1. Attempt any two parts of the following: (10×2=20)
  - (a) (i) Convert the following numbers as indicated:
    - (A)  $(62.7)_8 = ()_{16} = ()_2$
    - (B)  $(BC64)_{16} = ()_{10} = ()_2$
    - (C)  $(111011)_2 = ()_5$
    - (ii) Represent the unsigned decimal number 965 and 672 in BCD and then show the steps necessary to find their sum.
    - (b) (i) Minimize the given Boolean function using K-Map and implement the simplified function using NAND gates only  $F(A, B, C, D) = \Sigma m(0, 1, 2, 9, 11, 15) + d(8, 10, 14)$ .
      - (ii) (A) Express the Boolean function:  $F = AB + AC + A\overline{D}$  in a sum of minterms form.
        - (B) Implement two input XOR gate using NOR gates only.
    - (c) Consider a (7, 4) cyclic code. The generator polynomial for this code is given as  $g(x) = 1 + x + x^3$ . Find all the code words of this code.

- 2. Attempt any four parts of the following: (5×4=20)
  - (a) Implement the function:

$$F(A, B, C) = \overline{A} \overline{B} C + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C$$

using a 4:1 multiplexer.

- (b) Implement the full subtractor using a 1:8 demultiplexer.
- (c) Design a single bit magnitude comparator.
- (d) Design an Excess-3 to BCD code converter.
- (e) Design an octal to binary encoder.
- (f) Design a decimal adder.
- 3. Attempt any four parts of the following:  $(5\times4=20)$ 
  - (a) Explain how SR-FF is converted into D-FF.
  - (b) Explain the working of the master slave JK flip-flop.
  - (c) Design modulo 3-counter using S-R flip-flop.
  - (d) Design a circuit that implements the state diagrams of figure 1.



Figure 1

- (e) Design a 4 bit serial in-serial out shift register using JK flip-flop.
- (f) Design a shift register counter to generate a sequence length of 5 having self-start feature.

- 4. Attempt any four parts of the following: (5×4=20)
  - (a) Design a combinational circuit using a ROM that accepts a 3 bit number and generates an output binary number equal to the square of the input number.
  - (b) Implement the following functions using 3-input, 3 product terms and 2 output PLA:

$$F_1 = A\overline{B} + AC$$

$$F_2 = AC + BC$$

- (c) It is required to obtain a memory system of 2K × 8 bits for a certain application. Given that memory ICs available are 1K × 8. Obtain the desired system.
- (d) Draw and explain the ASM chart for binary multiplexer.
- (e) Explain the basic elements of the ASM chart. How does it differ from conventional flow chart?
- (f) Distinguish between SRAM and DRAM. Also draw static RAM cell.
- 5. Attempt any two parts of the following: (10×2=20)
  - (a) Write short notes on:
    - (i) Fundamental mode asynchronous sequential circuit
    - (ii) Pulse mode asynchronous sequential circuit.
  - (b) (i) What are critical race and non-critical race? How can they be avoided? Is race-around condition an example of race?
    - (ii) Design a JK-FF asynchronous sequential circuit that has two inputs and single output. The circuit is required to give an output equal to 1 if and only if the same input variable changes two or more times consecutively.

- (c) Suppose the circuit of Figure 2 is operating in fundamental mode. Analyse the circuit by forming the:
  - (i) Flow table,
  - (ii) Transition flow diagram, and
  - (iii) Transition flow table if exists.



Figure 2